Kinetic model of the Boltzmann equation for a diatomic gas with rotational degrees of freedom
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 12, pp. 2233-2245 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A system of model kinetic equations is proposed to describe flows of a diatomic rarefied gas (nitrogen). A conservative numerical method is developed for its solution. A shock wave structure in nitrogen is computed, and the results are compared with experimental data in a wide range of Mach numbers. The system of model kinetic equations is intended to compute complex-geometry three-dimensional flows of a diatomic gas with rotational degrees of freedom.
@article{ZVMMF_2010_50_12_a12,
     author = {I. N. Larina and V. A. Rykov},
     title = {Kinetic model of the {Boltzmann} equation for a diatomic gas with rotational degrees of freedom},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2233--2245},
     year = {2010},
     volume = {50},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_12_a12/}
}
TY  - JOUR
AU  - I. N. Larina
AU  - V. A. Rykov
TI  - Kinetic model of the Boltzmann equation for a diatomic gas with rotational degrees of freedom
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 2233
EP  - 2245
VL  - 50
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_12_a12/
LA  - ru
ID  - ZVMMF_2010_50_12_a12
ER  - 
%0 Journal Article
%A I. N. Larina
%A V. A. Rykov
%T Kinetic model of the Boltzmann equation for a diatomic gas with rotational degrees of freedom
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 2233-2245
%V 50
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_12_a12/
%G ru
%F ZVMMF_2010_50_12_a12
I. N. Larina; V. A. Rykov. Kinetic model of the Boltzmann equation for a diatomic gas with rotational degrees of freedom. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 12, pp. 2233-2245. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_12_a12/

[1] Rykov V. A., “Modelnoe kineticheskoe uravnenie dlya gaza s vraschatelnymi stepenyami svobody”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1975, no. 6, 107–115

[2] Larina I. N., Rykov V. A., “Obtekanie sfery dvukhatomnym gazom na osnove kineticheskikh uravnenii”, Dokl. AN SSSR, 227:1 (1976), 60–62

[3] Larina I. N., Rykov V. A., “Prostranstvennoe obtekanie konicheskikh tel potokom razrezhennogo gaza”, Zh. vychisl. matem. i matem. fiz., 29:1 (1989), 110–117 | MR | Zbl

[4] Shakhov E. M., “Ob obobschenii relaksatsionnogo kineticheskogo uravneniya Kruka”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1968, no. 5, 142–145

[5] Larina I. N., Rykov V. A., “O granichnykh usloviyakh dlya gazov na poverkhnosti tela”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1986, no. 5, 141–148

[6] Larina I. N., Rykov V. A., “The boundary condition on the body surface for a diatomic gas”, Proc. of 15th Intern. Symp. on Rarefied Gas Dinamics, v. 1, Stuttgart, 1986, 635–643

[7] Larina I. N., Rykov V. A., “Chislennoe reshenie uravneniya Boltsmana metodom simmetrichnogo rasschepleniya”, Zh. vychisl. matem. i matem. fiz., 43:4 (2003), 601–613 | MR | Zbl

[8] Girshfelder Dzh., Kertiss Ch., Berd R., Molekulyarnaya teoriya gazov i zhidkostei, Izd-vo inostr. lit., M., 1961

[9] Lordi J. A., Mates R. E., “Rotational relaxation in nonpolar diatomic gases”, Phys. Fluids, 13:2 (1970), 291–308 | DOI | Zbl

[10] Robben F., Talbot L., “Experimental study of the rotational distribution function of nitrogen in a shock wave”, Phys. Fluids, 9:4 (1966), 653–662 | DOI

[11] Alsmeyer H., “Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam”, J. Fluid. Mech., 74:3 (1976), 497–513 | DOI

[12] Rykov V. A., Titarev V. A., Shakhov E. M., “Struktura udarnoi volny v dvukhatomnom gaze na osnove kineticheskoi modeli”, Izv. RAN. Mekhan. zhidkosti i gaza, 2008, no. 2, 171–182 | MR