Triple-deck theory in transonic flows and boundary layer stability
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 12, pp. 2208-2222 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An analysis of the lower branch of the neutral curve for the Blasius boundary layer leads to a perturbed velocity field with a triple-deck structure, which is a rather unexpected result. It is the asymptotic treatment of the stability problem that has a rational basis, since it is in the limit of high Reynolds numbers that the basic flow has the form of a boundary layer. The principles for constructing a boundary layer stability theory based on the triple-deck theory are proposed. Although most attention is focused on transonic outer flows, a comparative analysis with the asymptotic theory of boundary layer stability in subsonic flows is given. The parameters of internal waves near the lower branch of the neutral curve are associated with a certain perturbation field pattern. These parameters satisfy dispersion relations derived by solving eigenvalue problems. The dispersion relations are investigated in complex planes.
@article{ZVMMF_2010_50_12_a10,
     author = {A. N. Bogdanov and V. N. Diesperov and V. I. Zhuk and A. V. Chernyshev},
     title = {Triple-deck theory in transonic flows and boundary layer stability},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2208--2222},
     year = {2010},
     volume = {50},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_12_a10/}
}
TY  - JOUR
AU  - A. N. Bogdanov
AU  - V. N. Diesperov
AU  - V. I. Zhuk
AU  - A. V. Chernyshev
TI  - Triple-deck theory in transonic flows and boundary layer stability
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 2208
EP  - 2222
VL  - 50
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_12_a10/
LA  - ru
ID  - ZVMMF_2010_50_12_a10
ER  - 
%0 Journal Article
%A A. N. Bogdanov
%A V. N. Diesperov
%A V. I. Zhuk
%A A. V. Chernyshev
%T Triple-deck theory in transonic flows and boundary layer stability
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 2208-2222
%V 50
%N 12
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_12_a10/
%G ru
%F ZVMMF_2010_50_12_a10
A. N. Bogdanov; V. N. Diesperov; V. I. Zhuk; A. V. Chernyshev. Triple-deck theory in transonic flows and boundary layer stability. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 12, pp. 2208-2222. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_12_a10/

[1] Dorodnitsyn A. A., “Laminarnyi pogranichnyi sloi v szhimaemom gaze”, Dokl. AN SSSR, 34:8 (1942), 234–242

[2] Dorodnitsyn A. A., “Pogranichnyi sloi v szhimaemom gaze”, Prikl. matem. i mekhan., 6:6 (1942), 449–486

[3] Zhuk V. I., Volny Tollmina–Shlikhtinga i solitony, Nauka, M., 2001

[4] Bogdanov A. N., Diesperov V. N., Zhuk V. I. i dr., “Asimptoticheskie modeli vyazkikh nestatsionarnykh transzvukovykh techenii”, VIII Vseros. s'ezd po teor. i prikl. mekhan., Ann. dokl., UrO RAN, Ekaterinburg, 2001

[5] Ryzhov O. S., “Asimptoticheskie metody v dinamike zhidkosti”, Zh. vychisl. matem. i matem. fiz., 20:5 (1980), 1221–1248 | MR | Zbl

[6] Diesperov V. N., Ryzhov O. S., “Asimptoticheskie metody v mekhanike zhidkosti”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1982, no. 2, 75–87 | MR

[7] Ryzhov O. S., Savenkov I. V., “Ob ustoichivosti pogranichnogo sloya pri transzvukovykh skorostyakh vneshnego potoka”, Prikl. mekhan. i tekhn. fiz., 1990, no. 2, 65–71

[8] Smith F. T., “On the nonparallel flow stability of the Blasius boundary layer”, Proc. Roy. Soc. London. Ser. A, 366:1724 (1979), 91–109 | DOI | Zbl

[9] Zhuk V. I., Ryzhov O. S., “Svobodnoe vzaimodeistvie i ustoichivost pogranichnogo sloya v neszhimaemoi zhidkosti”, Dokl. AN SSSR, 253:6 (1980), 1326–1329 | MR | Zbl

[10] Ryzhov O. S., Zhuk V. I., “Stability and separation of freely interacting boundary layers”, Lect. Notes Phys., 141, 1981, 360–366

[11] Bodonyi B. J., Smith F. T., “The upper branch stability of the Blasius boundary layer, including non-parallel flow effect”, Proc. Roy. Soc. London. Ser. A, 375:1760 (1981), 65–92 | DOI | MR | Zbl

[12] Guzaeva K. V., Zhuk V. I., “K asimptoticheskoi teorii vozmuschenii, indutsiruyuschikh sobstvennyi gradient davleniya v pogranichnom sloe na plastine v transzvukovom potoke”, Zh. vychisl. matem. i matem. fiz., 48:1 (2009), 129–147 | MR

[13] Zhuk V. I., Chernyshev A. V., “Dispersionnye uravneniya v zadache ustoichivosti transzvukovykh techenii i nekotorye ikh svoistva”, Zh. vychisl. matem. i matem. fiz., 49:1 (2010), 1060–1080

[14] Zhuk V. I., Ryzhov O. S., “Ob odnom svoistve linearizovannykh uravnenii pogranichnogo sloya s samoindutsirovannym davleniem”, Dokl. AN SSSR, 240:5 (1978), 1042–1045 | Zbl

[15] Ryzhov O. S., Zhuk V. I., “Internal waves in the boundary layer with the self-induced pressure”, J. Mécanique, 19:2 (1980), 561–580 | MR | Zbl

[16] Guderlei K. G., Teoriya okolozvukovykh techenii, Izd-vo inostr. lit., M., 1960

[17] Koul Dzh., Kuk L., Transzvukovaya aerodinamika, Mir, M., 1989

[18] Messiter A. F., Feo A., Melnik R. E., “Shock-wave strength for separation of a laminar boundary layer at transonic speeds”, AIAA Journal, 9:6 (1971), 1197–1198 | DOI

[19] Ryzhov O. S., “O nestatsionarnom pogranichnom sloe s samoindutsirovannym davleniem pri okolozvukovykh skorostyakh vneshnego potoka”, Dokl. AN SSSR, 236:5 (1977), 1091–1094 | MR | Zbl

[20] Ryzhov O. S., “Asymptotic methods in transocic flow theory”, Proc. IUTAM Symp. Transsonicum III (Göttingen, 1988), Springer, Berlin etc., 1989 | Zbl

[21] Zhuk V. I., “Nelineinye vozmuscheniya, indutsiruyuschie sobstvennyi gradient davleniya v pogranichnom sloe na plastine v transzvukovom potoke”, Prikl. matem. i mekhan., 57:5 (1993), 68–78 | MR | Zbl

[22] Lin C. C., Reissner E., Tsien H. S., “On two-dimensional non-steady motion of a slender body in a compressible fluid”, J. Math. Phys., 27:3 (1948), 220–231 ; Gazovaya dinamika, Izd-vo inostr. lit., M., 1950, 183–197 | MR | Zbl

[23] Barantsev R. G., Lektsii po transzvukovoi gazodinamike, Izd-vo Leningr. un-ta, L., 1965 | MR

[24] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968

[25] Bogdanov A. N., “Vysshie priblizheniya transzvukovogo razlozheniya v zadachakh nestatsionarnykh transzvukovykh techenii”, Prikl. matem. i mekhan., 61:6 (1997), 798–811 | MR | Zbl

[26] Bogdanov A. N., Diesperov V. N., “Modelirovanie nestatsionarnogo transzvukovogo techeniya i ustoichivost transzvukovogo pogranichnogo sloya”, Prikl. matem. i mekhan., 69:3 (2005), 394–403 | MR | Zbl