Simulation of current layer dynamics in the magnetogasdynamic interaction with an argon flow
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 11, pp. 1953-1960 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A nonstationary three-dimensional magnetohydrodynamic (MHD) model is used to numerically simulate the formation of a current layer interacting with a transverse magnetic field in a supersonic argon flow. The structural features of the current layer and the characteristics of the process are analyzed at various intensities of the MHD interaction. The problem is solved using the MacCormack method with splitting in spatial coordinates and flux-corrected transport.
@article{ZVMMF_2010_50_11_a8,
     author = {E. N. Vasil'ev and D. A. Nesterov},
     title = {Simulation of current layer dynamics in the magnetogasdynamic interaction with an argon flow},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1953--1960},
     year = {2010},
     volume = {50},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_11_a8/}
}
TY  - JOUR
AU  - E. N. Vasil'ev
AU  - D. A. Nesterov
TI  - Simulation of current layer dynamics in the magnetogasdynamic interaction with an argon flow
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 1953
EP  - 1960
VL  - 50
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_11_a8/
LA  - ru
ID  - ZVMMF_2010_50_11_a8
ER  - 
%0 Journal Article
%A E. N. Vasil'ev
%A D. A. Nesterov
%T Simulation of current layer dynamics in the magnetogasdynamic interaction with an argon flow
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 1953-1960
%V 50
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_11_a8/
%G ru
%F ZVMMF_2010_50_11_a8
E. N. Vasil'ev; D. A. Nesterov. Simulation of current layer dynamics in the magnetogasdynamic interaction with an argon flow. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 11, pp. 1953-1960. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_11_a8/

[1] Vasilev E. N., Derevyanko V. A., Slavin V. S., “Stabilizirovannyi tokovyi sloi”, Teplofiz. vysokikh t-r, 24:5 (1986), 844–851

[2] Vasilev E. N., Nesterov D. A., “Razvitie neustoichivosti Releya–Teilora v neodnorodnykh magnitogazodinamicheskikh techeniyakh”, Zh. vychisl. matem. i matem. fiz., 46:5 (2006), 902–912 | MR

[3] Vasilev E. N., Nesterov D. A., “Prostranstvennaya struktura tokovogo sloya v MGD-kanale”, Teplofiz. vysokikh t-r, 44:4 (2006), 503–511

[4] Vasilev E. N., Derevyanko V. A., Nesterov D. A., “Chislennoe modelirovanie magnitogazodinamicheskikh protsessov v trakte impulsnoi ustanovki”, Teplofiz. i aeromekhan., 13:3 (2006), 399–409

[5] Kamenschikov V. A., Plastinin Yu. A., Nikolaev V. M., Novitskii L. A., Radiatsionnye svoistva gazov pri vysokikh temperaturakh, Mashinostr., M., 1971

[6] Moskvin Yu. V., “Izluchatelnye sposobnosti nekotorykh gazov v oblasti vysokikh temperatur 6000-(2000)-12000 K”, Teplofiz. vysokikh t-r, 6:1 (1968), 1–9

[7] Vasilev E. N., Nesterov D. A., “Vychislitelnaya model radiatsionno-konvektivnogo teploobmena v neodnorodnykh magnitogazodinamicheskikh techeniyakh”, Vychisl. tekhnologii, 10:6 (2005), 13

[8] Katsnelson S. S., Kovalskaya G. A., Teplofizicheskie i opticheskie svoistva argonovoi plazmy, Nauka, Novosibirsk, 1985

[9] Devoto R. S., “Transport coefficients of partially ionized argon”, Phys. Fluids, 10:2 (1967), 354–364 | DOI