Finite element method for the diffraction problem in a waveguide
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 11, pp. 1926-1930
Cet article a éte moissonné depuis la source Math-Net.Ru
The convergence of the finite element method (FEM) as applied to the diffraction problem in a waveguide in the case when there is no damping in the medium filling the waveguide is proved. A functional space that takes into account the partial radiation conditions is introduced to carry out the proof. A highly accurate approximation method for the partial radiation conditions is considered.
@article{ZVMMF_2010_50_11_a5,
author = {A. L. Delitsyn},
title = {Finite element method for the diffraction problem in a waveguide},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1926--1930},
year = {2010},
volume = {50},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_11_a5/}
}
TY - JOUR AU - A. L. Delitsyn TI - Finite element method for the diffraction problem in a waveguide JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 1926 EP - 1930 VL - 50 IS - 11 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_11_a5/ LA - ru ID - ZVMMF_2010_50_11_a5 ER -
A. L. Delitsyn. Finite element method for the diffraction problem in a waveguide. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 11, pp. 1926-1930. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_11_a5/
[1] Ilinskii A. S., Kravtsov V. V., Sveshnikov A. G., Matematicheskie modeli elektrodinamiki, Vyssh. shkola, M., 1991
[2] Delitsyn A. L., “O zadache rasseyaniya na neodnorodnosti v volnovode”, Zh. vychisl. matem. i matem. fiz., 40:1 (2000), 606–610 | MR | Zbl
[3] Krasnoselskii M. A., Vainikko G. M., Zabreiko P. P. i dr., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR
[4] Selivanov D., Kurs ischisleniya konechnykh raznostei, SPb, 1908