Factorized SM-stable two-level schemes
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 11, pp. 1919-1925 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Additional requirements for unconditionally stable schemes were formulated by analyzing higher order accurate difference schemes in time as applied to boundary value problems for second-order parabolic equations. These requirements concern the inheritance of the basic properties of the differential problem and lead to the concept of an SM-stable difference scheme. An earlier distinguished class of SM-stable schemes consists of the schemes based on various Padé approximations. The computer implementation of such higher order accurate schemes deserves special consideration because certain matrix polynomials must be inverted at each new time level. Factorized SM-stable difference schemes are constructed that can be interpreted as diagonally implicit Runge–Kutta methods.
@article{ZVMMF_2010_50_11_a4,
     author = {P. N. Vabishchevich},
     title = {Factorized {SM-stable} two-level schemes},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1919--1925},
     year = {2010},
     volume = {50},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_11_a4/}
}
TY  - JOUR
AU  - P. N. Vabishchevich
TI  - Factorized SM-stable two-level schemes
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 1919
EP  - 1925
VL  - 50
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_11_a4/
LA  - ru
ID  - ZVMMF_2010_50_11_a4
ER  - 
%0 Journal Article
%A P. N. Vabishchevich
%T Factorized SM-stable two-level schemes
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 1919-1925
%V 50
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_11_a4/
%G ru
%F ZVMMF_2010_50_11_a4
P. N. Vabishchevich. Factorized SM-stable two-level schemes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 11, pp. 1919-1925. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_11_a4/

[1] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[2] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973 | Zbl

[3] Samarskii A. A., Vabishchevich P. N., Computational heat transfer, v. 1, Mathematical Modelling, Wiley, Chichester, 1995

[4] Butcher J. C., Numerical methods for ordinary differential equations, Wiley, Hoboken, N.Y., 2008 | MR | Zbl

[5] Gear C. W., Numerical initial value problems in ordinary differential equations, Prentice-Hall, Englewood Cliffs, NJ, 1971 | MR | Zbl

[6] Vabischevich P. N., “Dvukhsloinye skhemy povyshennogo poryadka approksimatsii dlya nestatsionarnykh zadach matematicheskoi fiziki”, Zh. vychisl. matem. i matem. fiz., 50:1 (2010), 118–130 | MR

[7] Dekker K., Verwer J., Stability of Runge–Kutta methods for stiff nonlinear differential equations, North-Holland, Amsterdam, 1984 | MR | Zbl

[8] Hairer E., Wanner G., Solving ordinary differential equations, v. II, Stiff and differential-algebraic problems, Springer, Berlin, 1996 | MR | Zbl

[9] Nørsett S. P., “Restricted Padé approximations to the exponential function”, SIAM J. Numer. Anal., 15 (1978), 1008–1029 | DOI | MR