@article{ZVMMF_2010_50_11_a4,
author = {P. N. Vabishchevich},
title = {Factorized {SM-stable} two-level schemes},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1919--1925},
year = {2010},
volume = {50},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_11_a4/}
}
P. N. Vabishchevich. Factorized SM-stable two-level schemes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 11, pp. 1919-1925. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_11_a4/
[1] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR
[2] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973 | Zbl
[3] Samarskii A. A., Vabishchevich P. N., Computational heat transfer, v. 1, Mathematical Modelling, Wiley, Chichester, 1995
[4] Butcher J. C., Numerical methods for ordinary differential equations, Wiley, Hoboken, N.Y., 2008 | MR | Zbl
[5] Gear C. W., Numerical initial value problems in ordinary differential equations, Prentice-Hall, Englewood Cliffs, NJ, 1971 | MR | Zbl
[6] Vabischevich P. N., “Dvukhsloinye skhemy povyshennogo poryadka approksimatsii dlya nestatsionarnykh zadach matematicheskoi fiziki”, Zh. vychisl. matem. i matem. fiz., 50:1 (2010), 118–130 | MR
[7] Dekker K., Verwer J., Stability of Runge–Kutta methods for stiff nonlinear differential equations, North-Holland, Amsterdam, 1984 | MR | Zbl
[8] Hairer E., Wanner G., Solving ordinary differential equations, v. II, Stiff and differential-algebraic problems, Springer, Berlin, 1996 | MR | Zbl
[9] Nørsett S. P., “Restricted Padé approximations to the exponential function”, SIAM J. Numer. Anal., 15 (1978), 1008–1029 | DOI | MR