A method of the dissipative Henon map renormalization
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 11, pp. 1893-1908 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A mechanism for period doubling and transition to chaos for the dissipative Henon map is investigated. The renormalization group technique is used for that purpose. In the context of this technique, a special approach is developed that relates the renormalization procedure with the simpler problem of the renormalization of the conservative Henon map.
@article{ZVMMF_2010_50_11_a2,
     author = {Yu. V. Bibik and D. A. Sarancha},
     title = {A method of the dissipative {Henon} map renormalization},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1893--1908},
     year = {2010},
     volume = {50},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_11_a2/}
}
TY  - JOUR
AU  - Yu. V. Bibik
AU  - D. A. Sarancha
TI  - A method of the dissipative Henon map renormalization
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 1893
EP  - 1908
VL  - 50
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_11_a2/
LA  - ru
ID  - ZVMMF_2010_50_11_a2
ER  - 
%0 Journal Article
%A Yu. V. Bibik
%A D. A. Sarancha
%T A method of the dissipative Henon map renormalization
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 1893-1908
%V 50
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_11_a2/
%G ru
%F ZVMMF_2010_50_11_a2
Yu. V. Bibik; D. A. Sarancha. A method of the dissipative Henon map renormalization. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 11, pp. 1893-1908. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_11_a2/

[1] Sinai Ya. G., Shilnikov L. P. (red.), Strannye attraktory, Mir, M., 1981 | MR

[2] Tabor M., Khaos i integriruemost v nelineinoi dinamike, Editorial URSS, M., 2001

[3] Li T. Y., Yorke J. A., “Period three implies chaos”, Amer. Math. Monthly, 82 (1975), 985–992 | DOI | MR

[4] Shuster G., Determinirovannyi khaos, Mir, M., 1988 | MR | Zbl

[5] Hellemann R. H. G., “Self-generated chaotic behaviour in nonlinear mechanics”, Fundamental Problems in Statistical Mechanics, 5, North-Holland Publ., Amsterdam, 1980 | MR

[6] Mackay R. S., Renormalization in area-preserving maps, Ph. D. Thesis, Princeton Univ.; Univ. Microfilms Inc., Ann Arbor, MI, 1982 | MR

[7] Volterra V., Matematicheskaya teoriya borby za suschestvovanie, Nauka, M., 1976 | MR

[8] Bazykin A. D., Nelineinaya dinamika vzaimodeistvuyuschikh populyatsii, In-t kompyuternykh issl., Moskva–Izhevsk, 2003

[9] Prasolov V. V., Solovev Yu. P., Ellipticheskie krivye i algebraicheskie uravneniya, Faktorial, M., 1997