Multifocus lemniscates: Approximation of curves
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 11, pp. 2060-2072 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A focal method for the continuous approximation of smooth closed plane curves is proposed. Multifocus lemniscates are used as the approximating functions. The curve to be approximated is represented by a finite set of foci inside the curve; the number and the location of the foci provide the degrees of freedom for the focal approximation. An algorithmic solution of this problem in various modifications is constructed. Proximity criteria for curves are proposed. A comparative analysis of the approximative capabilities of the focal method with the capabilities of the classical harmonic approximation method is performed.
@article{ZVMMF_2010_50_11_a17,
     author = {T. A. Rakcheeva},
     title = {Multifocus lemniscates: {Approximation} of curves},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2060--2072},
     year = {2010},
     volume = {50},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_11_a17/}
}
TY  - JOUR
AU  - T. A. Rakcheeva
TI  - Multifocus lemniscates: Approximation of curves
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 2060
EP  - 2072
VL  - 50
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_11_a17/
LA  - ru
ID  - ZVMMF_2010_50_11_a17
ER  - 
%0 Journal Article
%A T. A. Rakcheeva
%T Multifocus lemniscates: Approximation of curves
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 2060-2072
%V 50
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_11_a17/
%G ru
%F ZVMMF_2010_50_11_a17
T. A. Rakcheeva. Multifocus lemniscates: Approximation of curves. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 11, pp. 2060-2072. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_11_a17/

[1] Khemming R. N., Chislennye metody, Nauka, M., 1968

[2] Hilbert D., Gesammelte Abhandlungen, v. 3, Springer, Berlin, 1935

[3] Markushevich A. I., Teoriya analiticheskikh funktsii, v. 1, Nauka, M., 1967

[4] Rakcheeva T. A., “Priblizhenie krivykh mnogofokusnymi lemniskatami”, Cheloveko-mashinnye sistemy i analiz dannykh, Nauka, M., 1992, 93–110

[5] Rakcheeva T. A., “Priblizhenie krivykh mnogofokusnymi lemniskatami na kompleksnoi ploskosti”, Matematika, kompyuter, obrazovanie, Sb. nauchn. trudov, v. 2, NITs “Regulyarnaya i khaotich. dinamika”, M.–Izhevsk, 2008, 68–75

[6] Rakcheeva T. A., “Algoritm fokusnogo priblizheniya krivykh”, Cheloveko-mashinnye sistemy i analiz dannykh, Nauka, M., 1992, 111–129

[7] Rakcheeva T. A., Fokusnaya approksimatsiya ploskikh krivykh, Zaklyuchitelnyi otchet Gos. reg. No 10.9.10011069, 1992 | Zbl

[8] Rakcheeva T. A., “Priblizhenie krivykh: fokusy ili garmoniki”, Matematika, kompyuter, obrazovanie, Sb. nauchn. trudov, v. 2, NITs “Regulyarnaya i khaotich. dinamika”, M.–Izhevsk, 2007, 83–90

[9] Rakcheeva T. A., “Kvazilemniskaty v zadache priblizheniya”, Treti Kurdyumovskie chteniya: Sinergetika v estestvennykh naukakh, Materialy mezhdunar. mezhdistsiplinarnoi nauchn. konf., Tver, 2007, 113–117

[10] Rakcheeva T. A., “Upravlenie mnogofokusnymi stepenyami svobody v zadache formoobrazovaniya”, Parallelnye vychisleniya i zadachi upravleniya, Tr. mezhdunar. nauchn. konf., IPU RAN, M., 2001

[11] Rakcheeva T. A., “Polipolyarnaya lemniskaticheskaya sistema koordinat”, Kompyuternye issl. i modelirovanie, 1, no. 3, M.–Izhevsk, 2009, 251–261