Fast computation of optimal disturbances for duct flows with a given accuracy
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 11, pp. 2017-2027 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This work is devoted to the numerical analysis of small flow disturbances, i.e. velocity and pressure deviations from the steady state, in ducts of constant cross sections. The main emphasis is put on the disturbances causing the most kinetic energy density growth, the so-called optimal disturbances, whose knowledge is important in laminar-turbulent transition and robust flow control investigations. Numerically, this amounts to computing the maximum amplification of the 2-norm of a matrix exponential $\exp\{tS\}$ for a square matrix $S$ at $t\geq0$. To speed up the computations, we propose a new algorithm based on low-rank approximations of the matrix exponential and prove that it computes the desired amplification with a given accuracy. We discuss its implementation and demonstrate its efficiency by means of numerical experiments with a duct of square cross section.
@article{ZVMMF_2010_50_11_a13,
     author = {A. V. Boiko and Yu. M. Nechepurenko and M. Sadkane},
     title = {Fast computation of optimal disturbances for duct flows with a given accuracy},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {2017--2027},
     year = {2010},
     volume = {50},
     number = {11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_11_a13/}
}
TY  - JOUR
AU  - A. V. Boiko
AU  - Yu. M. Nechepurenko
AU  - M. Sadkane
TI  - Fast computation of optimal disturbances for duct flows with a given accuracy
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 2017
EP  - 2027
VL  - 50
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_11_a13/
LA  - en
ID  - ZVMMF_2010_50_11_a13
ER  - 
%0 Journal Article
%A A. V. Boiko
%A Yu. M. Nechepurenko
%A M. Sadkane
%T Fast computation of optimal disturbances for duct flows with a given accuracy
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 2017-2027
%V 50
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_11_a13/
%G en
%F ZVMMF_2010_50_11_a13
A. V. Boiko; Yu. M. Nechepurenko; M. Sadkane. Fast computation of optimal disturbances for duct flows with a given accuracy. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 11, pp. 2017-2027. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_11_a13/

[1] Tatsumi T., Yoshimura T., “Stability of the laminar flow in a rectangular duct”, J. Fluid Mech., 212 (1990), 437–449 | DOI | Zbl

[2] Theofilis V., Duck P. W., Owen J., “Viscous linear stability analysis of rectangular duct and cavity flow”, J. Fluid Mech., 505 (2004), 249–286 | DOI | MR | Zbl

[3] Bottaro A., Soueid H., Galletti B., “Formation of secondary vortices in turbulent square-duct flow”, AIAA J., 2006, no. 4, 803–811 | DOI

[4] Biau D., Soueid H., Bottaro A., “Transition to turbulence in duct flow”, J. Fluid Mech., 596 (2008), 132–144 | DOI

[5] Trefethen L. N., Trefethen A. E., Reddy S. C., Driscoll T. A., “Hydrodynamic stability without eigenvalues”, Science, 261 (1993), 578–584 | DOI | MR

[6] Schmid P. J., Henningson D. S., Stability and transition in shear flows, Springer, Berlin, 2000 | MR

[7] Bewley T. R., Temamb R., Ziane M., “A general framework for robust control in fluid mechanics”, Science, 138 (2000), 360–392 | MR | Zbl

[8] Boiko A. V., Nechepurenko Yu. M., “Numerical spectral analysis of temporal stability of laminar duct flows with constant cross sections”, Comput. Maths. Math. Phys., 48:10 (2008), 1699–1714 | DOI | MR

[9] Higham N. J., “The scaling and squaring method for the matrix exponential revisited”, SIAM J. Matrix Anal. Appl., 26:4 (2005), 1179–1193 | DOI | MR | Zbl

[10] Moler C., van Loan C., “Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later”, SIAM Rev., 45 (2003), 3–49 | DOI | MR | Zbl

[11] Nechepurenko Yu. M., “Bounds for the matrix exponential based on the Lyapunov equation and limits of the Hausdorff set”, Comput. Maths. Math. Phys., 42:2 (2002), 125–134 | MR | Zbl

[12] Godunov S. K., Modern aspects of linear algebra, Translations of mathematical monographs, 175, Amer. Math. Soc., Providence, RI, 1998 | MR | Zbl