Numerical implementations of an iterative method with boundary condition splitting as applied to the nonstationary stokes problem in the gap between coaxial cylinders
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 11, pp. 1998-2016 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Numerical implementations of a new fast-converging iterative method with boundary condition splitting are constructed for solving the Dirichlet initial-boundary value problem for the nonstationary Stokes system in the gap between two coaxial cylinders. The problem is assumed to be axially symmetric and periodic along the cylinders. The construction is based on finite-difference approximations in time and bilinear finite-element approximations in a cylindrical coordinate system. A numerical study has revealed that the iterative methods constructed have fairly high convergence rates that do not degrade with decreasing viscosity (the error is reduced by approximately 7 times per iteration step). Moreover, the methods are second-order accurate with respect to the mesh size in the max norm for both velocity and pressure.
@article{ZVMMF_2010_50_11_a12,
     author = {M. B. Soloviev},
     title = {Numerical implementations of an iterative method with boundary condition splitting as applied to the nonstationary stokes problem in the gap between coaxial cylinders},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1998--2016},
     year = {2010},
     volume = {50},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_11_a12/}
}
TY  - JOUR
AU  - M. B. Soloviev
TI  - Numerical implementations of an iterative method with boundary condition splitting as applied to the nonstationary stokes problem in the gap between coaxial cylinders
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 1998
EP  - 2016
VL  - 50
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_11_a12/
LA  - ru
ID  - ZVMMF_2010_50_11_a12
ER  - 
%0 Journal Article
%A M. B. Soloviev
%T Numerical implementations of an iterative method with boundary condition splitting as applied to the nonstationary stokes problem in the gap between coaxial cylinders
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 1998-2016
%V 50
%N 11
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_11_a12/
%G ru
%F ZVMMF_2010_50_11_a12
M. B. Soloviev. Numerical implementations of an iterative method with boundary condition splitting as applied to the nonstationary stokes problem in the gap between coaxial cylinders. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 11, pp. 1998-2016. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_11_a12/

[1] Paltsev B. V., “Ob odnom iteratsionnom metode s rasschepleniem granichnykh uslovii resheniya 1-i nachalno-kraevoi zadachi dlya nestatsionarnoi sistemy Stoksa”, Mezhdunar. konf., posvyasch. 100-letiyu so dnya rozhdeniya S. L. Soboleva, Tezisy dokl., Novosibirsk, 2008, 540

[2] Paltsev B. V., “Ob odnom iteratsionnom metode s rasschepleniem granichnykh uslovii reshenii 1-i nachalno-kraevoi zadachi dlya sistemy Stoksa”, Dokl. RAN, 432:5 (2010), 597–603

[3] Solovev M. B., “O chislennykh realizatsiyakh novogo iteratsionnogo metoda s rasschepleniem granichnykh uslovii resheniya nestatsionarnoi zadachi Stoksa v polose pri uslovii periodichnosti”, Zh. vychisl. matem. i matem. fiz., 50:10 (2010), 1771–1792

[4] Kobelkov G. M., “O chislennykh metodakh resheniya uravnenii Nave–Stoksa v peremennykh skorost–davlenie”, Vychisl. protsessy i sistemy, 8, Nauka, M., 1991, 204–236 | MR

[5] Girault V., Raviart P., Finite element methods for Navier–Stokes equations, Springer, Berlin, 1986 | MR | Zbl

[6] Paltsev B. V., Chechel I. I., “Konechno-elementnye realizatsii iteratsionnykh metodov s rasschepleniem granichnykh uslovii dlya sistem Stoksa i tipa Stoksa v sharovom sloe, obespechivayuschie 2-i poryadok tochnosti vplot do osi simmetrii”, Zh. vychisl. matem. i matem. fiz., 45:5 (2005), 846–889 | MR

[7] Dzhozef D., Ustoichivost dvizhenii zhidkosti, Mir, M., 1981

[8] Lozinskii A. S., “Ob uskorenii konechno-elementnykh realizatsii iteratsionnykh protsessov s rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa”, Zh. vychisl. matem. i matem. fiz., 40:9 (2000), 1339–1363 | MR

[9] Solovev M. B., “O chislennykh realizatsiyakh novogo iteratsionnogo metoda s rasschepleniem granichnykh uslovii resheniya nestatsionarnoi zadachi Stoksa”, Dokl. RAN, 432:6 (2010), 741–745

[10] Paltsev B. V., “O bystroskhodyaschikhsya iteratsionnykh metodakh s nepolnym rasschepleniem granichnykh uslovii dlya mnogomernoi singulyarno vozmuschennoi sistemy tipa Stoksa”, Matem. sb., 185:4 (1994), 101–150 | MR

[11] Paltsev B. V., Chechel I. I., “Algoritmy chislennykh realizatsii na osnove bilineinykh konechnykh elementov iteratsionnykh metodov s rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa v polose pri uslovii periodichnosti”, Zh. vychisl. matem. i matem. fiz., 37:7 (1997), 799–815 | MR

[12] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1983 | MR

[13] Paltsev B. V., Chechel I. I., “O nekotorykh sposobakh povysheniya skorosti skhodimosti na vysokikh garmonikakh bilineinykh konechno-elementnykh realizatsii iteratsionnykh metodov s rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa”, Zh. vychisl. matem. i matem. fiz., 38:6 (1998), 956–970 | MR

[14] Abramov A. A., Andreev V. B., “O primenenii metoda progonki k nakhozhdeniyu periodicheskikh reshenii differentsialnykh i raznostnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 3:2 (1963), 377–381 | MR | Zbl

[15] Marchuk G. I., Shaidurov V. V., Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, M., 1979 | MR

[16] Fedorenko R. P., “Iteratsionnye metody resheniya raznostnykh ellipticheskikh uravnenii”, Uspekhi matem. nauk, 28:2 (1973), 121–182 | MR | Zbl

[17] McCormick S. F., Ruge J. W., “Multigrid methods for variational problems”, SIAM J. Numer. Analys., 19:5 (1982), 924–929 | DOI | MR | Zbl

[18] Paltsev B. V., Chechel I. I., “O realnykh kachestvakh bilineinykh konechno-elementnykh realizatsii metodov s rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa”, Zh. vychisl. matem. i matem. fiz., 38:2 (1998), 247–261 | MR