Solution to the stationary problem of glacier dynamics
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 10, pp. 1827-1839 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A stationary problem of the non-Newtonian fluid dynamics is applied to the modeling of an alpine glacier motion with Dirichlet boundary conditions corresponding to the ice increment in the upper part of the glacier and to the ice meltdown in its lower part. The existence of a weak solution in a functional class with the first-order derivatives integrable to the power $q>6/5$ is established for sufficiently small given boundary data. The proof is largely based on regularizing weak solutions and using properties of monotone operators.
@article{ZVMMF_2010_50_10_a8,
     author = {M. E. Bogovskii and L. Mantello and H. Yashima-Fujita},
     title = {Solution to the stationary problem of glacier dynamics},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1827--1839},
     year = {2010},
     volume = {50},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_10_a8/}
}
TY  - JOUR
AU  - M. E. Bogovskii
AU  - L. Mantello
AU  - H. Yashima-Fujita
TI  - Solution to the stationary problem of glacier dynamics
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 1827
EP  - 1839
VL  - 50
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_10_a8/
LA  - ru
ID  - ZVMMF_2010_50_10_a8
ER  - 
%0 Journal Article
%A M. E. Bogovskii
%A L. Mantello
%A H. Yashima-Fujita
%T Solution to the stationary problem of glacier dynamics
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 1827-1839
%V 50
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_10_a8/
%G ru
%F ZVMMF_2010_50_10_a8
M. E. Bogovskii; L. Mantello; H. Yashima-Fujita. Solution to the stationary problem of glacier dynamics. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 10, pp. 1827-1839. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_10_a8/

[1] Hutter K., Theoretical glaciology, D. Reidel, Dordrecht, 1983 | MR

[2] Hutter K., “Mathematical foundation of flow of glaciers and large ice masses”, Models Methods in Mechanics, Banach Center Publs, 15, 1985, 277–322 | MR | Zbl

[3] Pélissier M.-C., Sur quelques problèmes non linéaires en glaciology, Public. Math. d'Orsay 110/75-24, Univ. Paris-Sud, 1975 | MR

[4] Pélissier M.-C., Reynaud L., “Etude d'un modèle mathématique d'écoulement de glacier”, CRAS Paris, 279 (1976), 531–534 | MR

[5] Rodrigues J. F., Urbano J. M., “On the mathematical analysis of a valley glacier model”, Free Boundary Problems: Theory and Applications, Res. Notes Math., 409, Chapman Hall, 1999, 237–245 | MR | Zbl

[6] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR

[7] Bogovskii M. E., “Nekotorye voprosy vektornogo analiza, svyazannye s operatorami $\mathrm{div}$ i $\mathrm{grad}$”, Tr. seminara S. L. Soboleva, 1, IM SOAN SSSR, Novosibirsk, 1980, 5–40 | MR

[8] Klimov V. S., “Monotonnye otobrazheniya i techeniya vyazkikh sred”, Sibirskii matem. zhurnal, 45:6 (2004), 1299–1314 | MR

[9] Frehse J., Málek J., Steinhauer M., “On analysis of steady flows of fluids with shear-dependent viscosity based on the Lipschitz truncation method”, SIAM J. Math. Analys., 34:5 (2003), 1064–1083 | DOI | MR | Zbl

[10] Maslennikova V. N., Bogovskii M. E., “Approksimatsiya potentsialnykh i solenoidalnykh vektornykh polei”, Sibirskii matem. zhurnal, 24:5 (1983), 149–171 | MR | Zbl

[11] Duvaut G., Lions J.-L., Les inéquations en mécanique et en physique, Masson, Paris, 1987

[12] Krylov A. L., “Obosnovanie printsipa Dirikhle dlya pervoi kraevoi zadachi nelineinoi teorii uprugosti”, Dokl. AN SSSR, 146:1 (1962), 54–57 | Zbl

[13] Tychonoff A., “Ein Fixpunktsatz”, Math. Ann., 111 (1935), 767–776 | DOI | MR

[14] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl