Splitting superfluid hydrodynamic equations and instability of solutions in the case of degenerate bosons
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 10, pp. 1803-1810 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Properties of solutions to superfluid hydrodynamic equations as applied to the degenerate Bose gas are considered. The equations are split into two independent pairs of equations. One pair is written for the normal component implies the instability of solutions, which manifests itself in the majorant catastrophe with respect to the total density. The case when the thermodynamic functions depend on the difference of the normal and superfluid velocities is also considered. In that case, the system is not split; however, the instability and the majorant catastrophe occur when the initial temperature tends to absolute zero.
@article{ZVMMF_2010_50_10_a6,
     author = {V. I. Tsurkov},
     title = {Splitting superfluid hydrodynamic equations and instability of solutions in the case of degenerate bosons},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1803--1810},
     year = {2010},
     volume = {50},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_10_a6/}
}
TY  - JOUR
AU  - V. I. Tsurkov
TI  - Splitting superfluid hydrodynamic equations and instability of solutions in the case of degenerate bosons
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 1803
EP  - 1810
VL  - 50
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_10_a6/
LA  - ru
ID  - ZVMMF_2010_50_10_a6
ER  - 
%0 Journal Article
%A V. I. Tsurkov
%T Splitting superfluid hydrodynamic equations and instability of solutions in the case of degenerate bosons
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 1803-1810
%V 50
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_10_a6/
%G ru
%F ZVMMF_2010_50_10_a6
V. I. Tsurkov. Splitting superfluid hydrodynamic equations and instability of solutions in the case of degenerate bosons. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 10, pp. 1803-1810. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_10_a6/

[1] Khalatnikov I. M., Teoriya sverkhtekuchesti, Nauka, M., 1971

[2] Landau L. D., Lifshits E. M., Statisticheskaya fizika, v. 1, Nauka, M., 1976 | MR

[3] Tisza L., “The theory of Liquid Helium”, Phys. Rev., 72:9 (1947), 838–854 | DOI

[4] Zaremba E., Nikuni T., Griffin A., “Dynamics of trapped Bose gases at finite temperatures”, J. Low Temp. Phys., 116:3/4 (1999), 277–345 | DOI

[5] Tsurkov V. I., “Gazodinamicheskie effekty, svyazannye s neogranichennostyu reshenii kvazilineinykh sistem”, Zh. vychisl. matem. i matem. fiz., 11:2 (1971), 451–490

[6] Tsurkov V. I., Mazhorantnaya katastrofa gazodinamicheskikh uravnenii Eilera dlya bozonov, Nauka, M., 1978

[7] Tsurkov V. I., Majorant catastrophe of Gas Dynamic equations for bosons, Felicity Press, USA, 1998

[8] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | MR

[9] Tsurkov V. I., “Absolute zero as the instability point of hydrodynamics equations for Bose–Einstein condensate”, J. Low Temp. Phys., 138:3/4 (2005), 721–771 | DOI

[10] Anderson M. H., Ensher J. R., Mettnevs M. R. et al., “Observation of Bose–Einstein condensation in delnte atomic vapor”, Science, 269 (1995), 198–201 | DOI

[11] Tsurkov V. I., “The splitting of two fluid hydrodynamic equation for Bose–Einstein condensate”, ICAP, 21$^{\text{st}}$ Internat. Conf. Atom. Phys., Book Abstracts (2008 July 27–August 1, Storrs, CT, USA), 384