On numerical implementations of a new iterative method with boundary condition splitting for solving the nonstationary stokes problem in a strip with periodicity condition
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 10, pp. 1771-1792 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Based on finite-difference approximations in time and a bilinear finite-element approximation in spatial variables, numerical implementations of a new iterative method with boundary condition splitting are constructed for solving the Dirichlet initial-boundary value problem for the nonstationary Stokes system. The problem is considered in a strip with a periodicity condition along it. At each iteration step of the method, the original problem splits into two much simpler boundary value problems that can be stably numerically approximated. As a result, this approach can be used to construct new effective and stable numerical methods for solving the nonstationary Stokes problem. The velocity and pressure are approximated by identical bilinear finite elements, and there is no need to satisfy the well-known difficult-to-verify Ladyzhenskaya-Brezzi-Babuska condition, as is usually required when the problem is discretized as a whole. Numerical iterative methods are constructed that are first- and second-order accurate in time and second-order accurate in space in the max norm for both velocity and pressure. The numerical methods have fairly high convergence rates corresponding to those of the original iterative method at the differential level (the error decreases approximately 7 times per iteration step). Numerical results are presented that illustrate the capabilities of the methods developed.
@article{ZVMMF_2010_50_10_a4,
     author = {M. B. Soloviev},
     title = {On numerical implementations of a new iterative method with boundary condition splitting for solving the nonstationary stokes problem in a strip with periodicity condition},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1771--1792},
     year = {2010},
     volume = {50},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_10_a4/}
}
TY  - JOUR
AU  - M. B. Soloviev
TI  - On numerical implementations of a new iterative method with boundary condition splitting for solving the nonstationary stokes problem in a strip with periodicity condition
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 1771
EP  - 1792
VL  - 50
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_10_a4/
LA  - ru
ID  - ZVMMF_2010_50_10_a4
ER  - 
%0 Journal Article
%A M. B. Soloviev
%T On numerical implementations of a new iterative method with boundary condition splitting for solving the nonstationary stokes problem in a strip with periodicity condition
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 1771-1792
%V 50
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_10_a4/
%G ru
%F ZVMMF_2010_50_10_a4
M. B. Soloviev. On numerical implementations of a new iterative method with boundary condition splitting for solving the nonstationary stokes problem in a strip with periodicity condition. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 10, pp. 1771-1792. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_10_a4/

[1] Kobelkov G. M., “K resheniyu nestatsionarnoi zadachi Stoksa”, Zh. vychisl. matem. i matem. fiz., 40:12 (2000), 1838–1841 | MR

[2] Girault V., Raviart P., Finite element methods for Navier-Stokes equations, Springer, Berlin, 1986 | MR | Zbl

[3] Kobelkov G. M., “O chislennykh metodakh resheniya uravnenii Nave–Stoksa v peremennykh skorost–davlenie”, Vychisl. protsessy i sistemy, 8, Nauka, M., 1991, 204–236 | MR

[4] Paltsev B. V., “O bystroskhodyaschikhsya iteratsionnykh metodakh s rasschepleniem granichnykh uslovii dlya mnogomernoi sistemy tipa Stoksa. Periodicheskie “techeniya” mezhdu parallelnymi stenkami”, Dokl. RAN, 325:5 (1992), 926–931 | MR

[5] Paltsev B. V., “O bystroskhodyaschikhsya iteratsionnykh metodakh s nepolnym rasschepleniem granichnykh uslovii dlya mnogomernoi singulyarno vozmuschennoi sistemy tipa Stoksa”, Matem. sb., 185:4 (1994), 101–150 | MR

[6] Paltsev B. V., “O bystroskhodyaschikhsya iteratsionnykh metodakh s polnym rasschepleniem granichnykh uslovii dlya mnogomernoi singulyarno vozmuschennoi sistemy tipa Stoksa”, Matem. sb., 185:9 (1994), 109–138 | MR

[7] Paltsev B. V., Chechel I. I., “Algoritmy chislennykh realizatsii na osnove bilineinykh konechnykh elementov iteratsionnykh metodov s rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa v polose pri uslovii periodichnosti”, Zh. vychisl. matem. i matem. fiz., 37:7 (1997), 799–815 | MR

[8] Paltsev B. V., Chechel I. I., “O realnykh kachestvakh bilineinykh konechno-elementnykh realizatsii metodov s rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa”, Zh. vychisl. matem. i matem. fiz., 38:2 (1998), 247–261 | MR

[9] Paltsev B. V., Chechel I. I., “O nekotorykh sposobakh povysheniya skorosti skhodimosti na vysokikh garmonikakh bilineinykh konechno-elementnykh realizatsii iteratsionnykh metodov s rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa”, Zh. vychisl. matem. i matem. fiz., 38:6 (1998), 956–970 | MR

[10] Lozinskii A. S., “Ob uskorenii konechno-elementnykh realizatsii iteratsionnykh protsessov s rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa”, Zh. vychisl. matem. i matem. fiz., 40:9 (2000), 1339–1363 | MR

[11] Lozinskii A. S., “Konechno-elementnaya realizatsiya iteratsionnykh protsessov s rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa v nekontsentricheskikh koltsakh”, Zh. vychisl. matem. i matem. fiz., 41:8 (2001), 1203–1216 | MR

[12] Paltsev B. V., Chechel I. I., “O bilineinykh konechno-elementnykh realizatsiyakh iteratsionnykh metodov s nepolnym rasschepleniem granichnykh uslovii dlya sistemy tipa Stoksa na pryamougolnike”, Zh. vychisl. matem. i matem. fiz., 39:11 (1999), 1838–1864 | MR

[13] Paltsev B. V., Chechel I. I., “Konechno-elementnye realizatsii iteratsionnykh metodov s rasschepleniem granichnykh uslovii dlya sistem Stoksa i tipa Stoksa v sharovom sloe, obespechivayuschie 2-i poryadok tochnosti vplot do osi simmetrii”, Zh. vychisl. matem. i matem. fiz., 45:5 (2005), 846–889 | MR

[14] Paltsev B. V., “Ob odnom iteratsionnom metode s rasschepleniem granichnykh uslovii reshenii 1-i nachalno-kraevoi zadachi dlya sistemy Stoksa”, Dokl. RAN, 432:5 (2010), 597–603

[15] Solovev M. B., “O chislennykh realizatsiyakh novogo iteratsionnogo metoda s rasschepleniem granichnykh uslovii resheniya nestatsionarnoi zadachi Stoksa”, Dokl. RAN, 432:6 (2010), 741–745

[16] Abramov A. A., Andreev V. B., “O primenenii metoda progonki k nakhozhdeniyu periodicheskikh reshenii differentsialnykh i raznostnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 3:2 (1963), 377–381 | MR | Zbl

[17] Fedorenko R. P., “Iteratsionnye metody resheniya raznostnykh ellipticheskikh uravnenii”, Uspekhi matem. nauk, 28:2 (1973), 121–182 | MR | Zbl

[18] McCormick S. F., Ruge J. W., “Multigrid methods for variational problems”, SIAM J. Numer. Analys., 19:5 (1982), 924–929 | DOI | MR | Zbl

[19] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1983 | MR

[20] Marchuk G. I., Shaidurov V. V., Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, M., 1979 | MR