High-accuracy versions of the collocations and least squares method for the numerical solution of the Navier–Stokes equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 10, pp. 1758-1770 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An approach for the creation of high-accuracy versions of the collocations and least squares method for the numerical solution of the Navier–Stokes equations is proposed. New versions of up to the eighth order of accuracy inclusive are implemented. For smooth solutions, numerical experiments on a sequence of grids show that the approximate solutions produced by these versions converge to the exact one with a high order of accuracy as $h\to0$, where $h$ is the maximal linear cell size of a grid. The numerical results obtained for the benchmark problem of the lid-driven cavity flow suggest that the collocations and least squares method is well suited for the numerical simulation of viscous flows.
@article{ZVMMF_2010_50_10_a3,
     author = {V. I. Isaev and V. P. Shapeev},
     title = {High-accuracy versions of the collocations and least squares method for the numerical solution of the {Navier{\textendash}Stokes} equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1758--1770},
     year = {2010},
     volume = {50},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_10_a3/}
}
TY  - JOUR
AU  - V. I. Isaev
AU  - V. P. Shapeev
TI  - High-accuracy versions of the collocations and least squares method for the numerical solution of the Navier–Stokes equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 1758
EP  - 1770
VL  - 50
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_10_a3/
LA  - ru
ID  - ZVMMF_2010_50_10_a3
ER  - 
%0 Journal Article
%A V. I. Isaev
%A V. P. Shapeev
%T High-accuracy versions of the collocations and least squares method for the numerical solution of the Navier–Stokes equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 1758-1770
%V 50
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_10_a3/
%G ru
%F ZVMMF_2010_50_10_a3
V. I. Isaev; V. P. Shapeev. High-accuracy versions of the collocations and least squares method for the numerical solution of the Navier–Stokes equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 10, pp. 1758-1770. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_10_a3/

[1] Russell R. D., Shampine L. F., “A collocation method for boundary value problems”, Numer. Math., 19 (1972), 1–28 | DOI | MR | Zbl

[2] de Boor C., Swartz B., “Collocation at Gaussian points”, SIAM J. Numer. Anal., 10:4 (1973), 582–606 | DOI | MR | Zbl

[3] Ascher U., Christiansen J., Russel R. D., “A collocation solver for mixed order systems of boundary value problems”, Math. Comput., 33 (1979), 659–679 | DOI | MR | Zbl

[4] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR

[5] Schild K. H., “Gaussian collocation via defect correction”, Numer. Math., 58 (1990), 369–386 | DOI | MR | Zbl

[6] Plyasunova A. V., Sleptsov A. G., “Kollokatsionno-setochnyi metod resheniya nelineinykh parabolicheskikh uravnenii na podvizhnykh setkakh”, Modelirovanie v mekhan., 1(18):4 (1987), 116–137 | MR | Zbl

[7] Sleptsov A. G., “Kollokatsionno-setochnoe reshenie ellipticheskikh kraevykh zadach”, Modelirovanie v mekhan., 5(22):2 (1991), 101–126 | MR | Zbl

[8] Leyk Z., “A C0-Collocation-like method for elliptic equations on rectangular regions”, J. Australian Math. Soc. Ser. B. Appl. Math., 38 (1997), 368–387 | DOI | MR | Zbl

[9] Sleptsov A. G., Shokin Yu. I., “Adaptivnyi proektsionno-setochnyi metod dlya ellipticheskikh zadach”, Zh. vychisl. matem. i matem. fiz., 37:5 (1997), 572–586 | MR | Zbl

[10] Semin L. G., Sleptsov A. G., Shapeev V. P., “Metod kollokatsii-naimenshikh kvadratov dlya uravnenii Stoksa”, Vychisl. tekhnologii, 1:2 (1996), 90–98 | MR | Zbl

[11] Semin L. G., Shapeev V. P., “Metod kollokatsii i naimenshikh kvadratov dlya uravnenii Nave–Stoksa”, Vychisl. tekhnologii, 3:3 (1998), 72–84 | MR | Zbl

[12] Shapeev V. P., Semin L. G., Belyaev V. V., “The collocation and least squares method for numerical solution of Navier–Stokes equations”, Proc. Steklov Inst. Math., M., 2003, S115–S137 | MR | Zbl

[13] Isaev V. I., Shapeev V. P., Eremin S. A., “Issledovanie svoistv metoda kollokatsii i naimenshikh kvadratov resheniya kraevykh zadach dlya uravneniya Puassona i uravnenii Nave–Stoksa”, Vychisl. tekhnologii, 12:3 (2007), 53–70 | Zbl

[14] Issaev V. I., Shapeev V. P., “Development of the collocations and least squares method”, Proc. Steklov Inst. Math., M., 2008, S87–S106

[15] Temam R., Uravneniya Nave-Stoksa. Teoriya i chislennyi analiz, Izd. 2-e, Mir, M., 1981 | MR | Zbl

[16] Botella O., Peyret R., “Benchmark spectral results on the lid-driven cavity flow”, Comput. Fluids, 27:4 (1998), 421–433 | DOI | MR | Zbl

[17] Ghia U., Ghia K. N., Shin C. T., “High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method”, J. Comp. Phys., 1982, no. 48, 387–411 | DOI | Zbl

[18] Barragy E., Carey G. F., “Stream function-vorticity driven cavity solution using $p$ finite elements”, Comput. Fluids, 26:5 (1997), 453–468 | DOI | Zbl

[19] Garanzha V. A., Konshin V. N., “Chislennye algoritmy dlya techenii vyazkoi zhidkosti, osnovannye na konservativnykh kompaktnykh skhemakh vysokogo poryadka approksimatsii”, Zh. vychisl. matem. i matem. fiz., 39:8 (1999), 1378–1392 | MR | Zbl

[20] Tee W., Sobey I. J., Spectral Method for the unsteady imconpressible Navier–Stokes equations in gauge formulation, OU Comput. Lab. Rep. NA04/09, 2004

[21] Proot M. M. J., Gerritsma M. I., “Application of the least-squares spectral element method using Chebyshev polynomials to solve the incompressible Navier–Stokes equations”, Numer. Algorith., 38 (2005), 155–172 | MR | Zbl

[22] Heinrichs W., “Least-squares spectral collocation with the overlapping Schwarz method for the incompressible Navier–Stokes equations”, Numer. Alg., 2006, no. 43, 61–73 | DOI | MR | Zbl

[23] Erturk E., Gokcol C., “Fourth order compact formulation of Navier–Stokes equations and driven cavity flow at high reynolds numbers”, Int. J. Numer. Meth. Fluids, 50 (2006), 421–436 | DOI | Zbl

[24] Shapeev A. V., Lin P., “An asymptotic fitting finite element method with exponential mesh refinement for accurate computation of corner eddies in viscous flows”, SIAM J. Sci. Comput., 31:3 (2009), 1874–1900 | DOI | MR | Zbl

[25] Matsokin A. M., Nepomnyaschikh S. V., “Metod alternirovaniya Shvartsa v podprostranstve”, Izv. vuzov. Matem., 1985, no. 10, 61–66 | MR | Zbl

[26] Godunov S. K., Uravneniya matematicheskoi fiziki, Nauka. GRFML, M., 1979 | MR | Zbl

[27] Vasilevskii Yu. V., Olshanskii M. A., Kratkii kurs po mnogosetochnym metodam i metodam dekompozitsii oblasti, MGU, M., 2007

[28] Beklemishev D. V., Dopolnitelnye glavy lineinoi algebry, Nauka, M., 1983 | MR | Zbl

[29] Forsait Dzh., Moler K., Chislennoe reshenie sistem lineinykh algebraicheskikh uravnenii, Mir, M., 1969 | MR

[30] Sleptsov A. G., “Ob uskorenii skhodimosti lineinykh iteratsii”, Modelirovanie v mekhan., 3(20), no. 3, Novosibirsk, 1989, 132–147 | MR | Zbl

[31] Saad Y., Numerical methods for large eigenvalue problems, Manchester Univ. Press, 1991 | MR

[32] Karamyshev V. B., Kovenya V. M., Sleptsov A. G., Cherny S. G., “Variational method of accelerating linear iterations and its applications”, Comput. Fluids, 25:5 (1996), 467–484 | DOI | MR | Zbl

[33] Isaev V. I., “Algoritm uskoreniya skhodimosti v metode kollokatsii i naimenshikh kvadratov”, Vychisl. tekhnologii, 13, Spets. vyp. 4 (2008), 41–46 | Zbl

[34] Moffatt H. K., “Viscous and resistive eddies near a sharp corner”, J. Fluid Mech., 1964, no. 18, 1–18 | DOI | Zbl

[35] Isaev V. I., Shapeev V. P., “Primenenie neregulyarnykh setok v metode kollokatsii i naimenshikh kvadratov”, Probl. teor. i prikl. matem., Tr. 39-i Vserossiiskoi molodezhnoi shkoly-konferentsii, Ekaterinburg, 2008, 61–66