Algebraic features of some generalizations of the Lotka–Volterra system
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 10, pp. 1741-1757 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For generalizations of the Lotka–Volterra system, an integration method is proposed based on the nontrivial algebraic structure of these generalizations. The method makes use of an auxiliary first-order differential equation derived from the phase curve equation with the help of this algebraic structure. Based on this equation, a Hamiltonian approach can be developed and canonical variables (moreover, action-angle variables) can be constructed.
@article{ZVMMF_2010_50_10_a2,
     author = {Yu. V. Bibik and D. A. Sarancha},
     title = {Algebraic features of some generalizations of the {Lotka{\textendash}Volterra} system},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1741--1757},
     year = {2010},
     volume = {50},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_10_a2/}
}
TY  - JOUR
AU  - Yu. V. Bibik
AU  - D. A. Sarancha
TI  - Algebraic features of some generalizations of the Lotka–Volterra system
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 1741
EP  - 1757
VL  - 50
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_10_a2/
LA  - ru
ID  - ZVMMF_2010_50_10_a2
ER  - 
%0 Journal Article
%A Yu. V. Bibik
%A D. A. Sarancha
%T Algebraic features of some generalizations of the Lotka–Volterra system
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 1741-1757
%V 50
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_10_a2/
%G ru
%F ZVMMF_2010_50_10_a2
Yu. V. Bibik; D. A. Sarancha. Algebraic features of some generalizations of the Lotka–Volterra system. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 10, pp. 1741-1757. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_10_a2/

[1] Bazykin A. D., Matematicheskaya biofizika vzaimodeistvuyuschikh populyatsii, Nauka, M., 1985 | MR | Zbl

[2] Bazykin A. D., Berezovskaya F. S., Denisov G. A., Kuznetsov Yu. A., Vliyanie effekta nasyscheniya khischnika i konkurentsii mezhdu khischnikami na dinamiku sistemy khischnik–zhertva. Dinamicheskie modeli i ekologiya populyatsii, DVNTs AN SSSR, Vladivostok, 1981

[3] Bibik Yu. V., Sarancha D. A., “Kanonicheskie peremennye dlya nekotorykh biologicheskikh modelei”, Matem. modelirovanie, 22:3 (2010), 120–144 | MR | Zbl

[4] Arnold V. I., Matematicheskie metody klassicheskoi mekhaniki, Nauka, M., 1989 | MR

[5] Vilazi G., Gamiltonova dinamika, In-t kompyuternykh issl. NITs “Regulyarnaya i khaotich. dinamika”, Moskva–Izhevsk, 2006

[6] Bazykin A. D., Nelineinaya dinamika vzaimodeistvuyuschikh populyatsii, In-t kompyuternykh issl. NITs “Regulyarnaya i khaotich. dinamika”, Moskva–Izhevsk, 2003

[7] Prasolov V. V., Solovev Yu. P., Ellipticheskie krivye i algebraicheskie uravneniya, Faktorial, M., 1997

[8] Leng S., Ellipticheskie funktsii, Mir, M., 1984 | MR