@article{ZVMMF_2010_50_10_a1,
author = {S. M. Elsakov and V. I. Shiryaev},
title = {Homogeneous algorithms for multiextremal optimization},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1727--1740},
year = {2010},
volume = {50},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_10_a1/}
}
TY - JOUR AU - S. M. Elsakov AU - V. I. Shiryaev TI - Homogeneous algorithms for multiextremal optimization JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2010 SP - 1727 EP - 1740 VL - 50 IS - 10 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_10_a1/ LA - ru ID - ZVMMF_2010_50_10_a1 ER -
S. M. Elsakov; V. I. Shiryaev. Homogeneous algorithms for multiextremal optimization. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 10, pp. 1727-1740. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_10_a1/
[1] Antonov M. O., Elsakov S. M., Shiryaev V. I., “Nakhozhdenie optimalnogo raspolozheniya radiomayakov v raznostno-dalnomernoi sisteme posadki letatelnogo apparata”, Aviakosmich. priborostroenie, 2005, no. 11, 41–45
[2] Gergel V. P., Gorodetskii S. Yu., Grishagin V. P., Strongin R. G., Sovremennye metody prinyatiya optimalnykh reshenii, Izd-vo NNGU, N. Novgorod, 2002
[3] Horst R., Pardalos P., Thoai N., Introduction to global optimization, 2nd ed., Kluwer Acad. Publs, Dordrecht, 2000 | MR
[4] Zhiglyavskii A. A., Matematicheskaya teoriya globalnogo sluchainogo poiska, Izd-vo LGU, L., 1985 | MR
[5] Zhiglyavskii A. A., Zhilinskas A. G., Metody poiska globalnogo ekstremuma, Nauka, M., 1991 | MR
[6] Zhilinskas A. G., Globalnaya optimizatsiya: Aksiomatika statisticheskikh modelei, algoritmy, primeneniya, Mokslas, Vilnyus, 1986 | MR
[7] Kvasov D. E., Sergeev Ya. D., “Mnogomernyi algoritm globalnoi optimizatsii na osnove adaptivnykh diagonalnykh krivykh”, Zh. vychisl. matem. i matem. fiz., 43:1 (2003), 42–59 | MR
[8] Piyavskii S. A., “Odin algoritm otyskaniya absolyutnogo ekstremuma funktsii”, Zh. vychisl. matem. i matem. fiz., 12:4 (1972), 888–896
[9] Strongin R. G., Chislennye metody v mnogoekstremalnykh zadachakh, Nauka, M., 1978 | MR | Zbl
[10] Rozanov Yu. A., Sluchainye polya i stokhasticheskie uravneniya s chastnymi proizvodnymi, Nauka, M., 1995 | MR | Zbl
[11] Skvortsov A. V., Triangulyatsiya Delone i ee primenenie, Izd-vo Tomskogo un-ta, Tomsk, 2002
[12] Preparata F., Sheimos M., Vychislitelnaya geometriya: Vvedenie, Mir, M., 1989 | MR | Zbl
[13] Rajan V. T., “Optimality of Delaunay triangulation in $\mathbb{R}^N$”, Proc. 7th ACM Symp. Comp. Geometry, 1991, 357–363
[14] Gorodetskii S. Yu., “Mnogoekstremalnaya optimizatsiya na osnove triangulyatsii oblasti”, Matem. modelirovanie i optimalnoe upravlenie, Vestn. Nizhegorodskogo gos. un-ta, 2 (21), Izd-vo NNGU, N. Novgorod, 1999, 249–269
[15] Gorodetskii S. Yu., SM-metody v zadachakh mnogoekstremalnoi optimizatsii s ogranicheniyami dlya klassa funktsii s lipshitsevymi proizvodnymi po napravleniyam, Dep. V VINITI 11.01.07 No 18-V2007, fak. VMK NNGU, N. Novgorod, 2007, 22 pp.
[16] Polyanin A. D., Zaitsev V. F., Spravochnik po nelineinym uravneniyam matematicheskoi fiziki: Tochnye resheniya, Fizmatlit, M., 2002 | MR
[17] Zhilinskas A. G., “Odnoshagovyi baiesovskii metod poiska ekstremuma funktsii odnoi peremennoi”, Kibernetika, 1 (1975), 139–144 | Zbl
[18] Kushner H., “A New method of locating the maximum point of an arbitrary multipeak curve in the presence of noise”, Transactions ASME. Ser. D. J. Basic Engng., 86:1 (1964), 97–106 | MR
[19] Grishagin V. A., “Ob usloviyakh skhodimosti dlya odnogo klassa algoritmov globalnogo poiska”, Chisl. metody nelineinogo programmirovaniya, Tezisy dokl. III Vses. seminara, KhGU, Kharkov, 1979, 82–84
[20] Gorodetskii S. Yu., “Skhodimost i asimptoticheskie otsenki povedeniya dlya odnogo klassa metodov poiska”, Dinamika sistem. Dinamika i upravlenie, GGU, Gorkii, 1984 | MR
[21] Sergeyev Ya. D., “On convergence of “Divide the best” global optimization algorithms”, Optimization, 44 (1998), 303–325 | DOI | MR | Zbl
[22] Pinter J. D., “Extended univariate algoritms for $\mathrm{N}$-dimensional global optimization”, Computing, 36:1–2 (1986), 91–103 | DOI | MR | Zbl