Numerical solution of a linear bilevel problem
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 10, pp. 1715-1726 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The linear bilevel programming problem in the optimistic formulation is studied. It is reduced to an optimization problem with a nonconvex constraint in the form of a d.c. function (that is, the difference of two convex functions). For this problem, local and global search methods are developed. Numerical experiments performed for numerous specially generated problems, including large-scale ones, demonstrate the efficiency of the proposed approach.
@article{ZVMMF_2010_50_10_a0,
     author = {T. V. Gruzdeva and E. G. Petrova},
     title = {Numerical solution of a linear bilevel problem},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1715--1726},
     year = {2010},
     volume = {50},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_10_a0/}
}
TY  - JOUR
AU  - T. V. Gruzdeva
AU  - E. G. Petrova
TI  - Numerical solution of a linear bilevel problem
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2010
SP  - 1715
EP  - 1726
VL  - 50
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_10_a0/
LA  - ru
ID  - ZVMMF_2010_50_10_a0
ER  - 
%0 Journal Article
%A T. V. Gruzdeva
%A E. G. Petrova
%T Numerical solution of a linear bilevel problem
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2010
%P 1715-1726
%V 50
%N 10
%U http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_10_a0/
%G ru
%F ZVMMF_2010_50_10_a0
T. V. Gruzdeva; E. G. Petrova. Numerical solution of a linear bilevel problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 50 (2010) no. 10, pp. 1715-1726. http://geodesic.mathdoc.fr/item/ZVMMF_2010_50_10_a0/

[1] Evtushenko Yu. G., Metody resheniya ekstremalnykh zadach i ikh primenenie v sistemakh optimizatsii, Nauka, M., 1982 | MR | Zbl

[2] Vasilev F. P., Metody optimizatsii, Faktorial-press, M., 2002

[3] Vasin A. A., Morozov V. V., Teoriya igr i modeli matematicheskoi ekonomiki, MAKS Press, M., 2005

[4] Germeier Yu. B., Igry s neprotivopolozhnymi interesami, Nauka, M., 1976 | MR | Zbl

[5] Moiseev N. N. (red.), Sovremennoe sostoyanie teorii issledovaniya operatsii, Nauka, M., 1979 | MR

[6] Audet C., Savard G., Zghal W., “New Branch-and-Cut algorithm for bilevel linear programming”, J. Optimizat. Theory and Applic., 134:2 (2007), 353–370 | DOI | MR | Zbl

[7] Bard J. F., Practical bilevel optimization, Kluwer Acad. Publ., Dordrecht, 1998 | MR

[8] Calamai P., Vicente L., “Generating linear and linear-quadratic bilevel programming problems”, SIAM J. Scient. Comput. Arch., 14:3 (1993), 770–782 | DOI | MR | Zbl

[9] Campelo M., Dantas S., Scheimberg S., “A note on a penalty function approach for solving bilevel linear programs”, J. Global Optimizat., 16 (2000), 245–255 | DOI | MR | Zbl

[10] Campelo M., Scheimberg S., “A study of local solutions in linear bilevel programming”, J. Optimizat. Theory and Applic., 125:1 (2005), 63–84 | DOI | MR | Zbl

[11] Candler W., Townsley R., “A linear two-level programming problem”, Comput. and Operat. Res., 9 (1982), 59–76 | DOI | MR

[12] Colson B., Marcotte P., Savard G., “An overview of bilevel optimization”, Ann. Operat. Res., 153:1 (2007), 235–256 | DOI | MR | Zbl

[13] Dempe S., Foundations of bilevel programming, Kluwer Acad. Publ., Dordrecht, 2002 | MR | Zbl

[14] Horst R., Tuy H., Global Optimization. Deterministic approaches, Springer, Berlin, 1993 | MR

[15] Judice J. J., Faustino A., “The linear-quadratic bilevel programming problem”, Informat. Syst. And Operat. Res., 32 (1994), 87–98 | Zbl

[16] Still G., “Linear bilevel problems: Genericity results and an efficient method for computing local minima”, Math. Meth. Operat. Res., 55 (2002), 383–400 | DOI | MR | Zbl

[17] Tuy H., Migdalas A., Varbrand P., “A global optimization approach for the linear two-level program”, J. Global Optimizat., 3 (1993), 1–23 | DOI | MR | Zbl

[18] White D., Anandalingam G., “A penalty function approach for solving bi-level programs”, J. Global Optimizat., 3 (1993), 397–419 | DOI | MR | Zbl

[19] Dempe S., “A simple algorithm for the linear bilevel programming problem”, Optimization, 18 (1987), 373–385 | DOI | MR | Zbl

[20] Izmailov A. F., Chuvstvitelnost v optimizatsii, Fizmatlit, M., 2006

[21] Saboia C. H., Campelo M., Scheimberg S., “A computational study of global algorithms for linear bilevel programming”, Numer. Algorithms, 35:2–4 (2004), 155–173 | DOI | MR

[22] Strekalovskii A. S., Orlov A. V., Malyshev A. V., “Lokalnyi poisk v kvadratichno-lineinoi zadache dvukhurovnevogo programmirovaniya”, Sibirskii zhurnal vychisl. matem., 13 (2010), 75–88

[23] Orlov A. V., “Chislennoe reshenie zadach bilineinogo programmirovaniya”, Zh. vychisl. matem. i matem. fiz., 48:2 (2008), 237–254 | MR | Zbl

[24] Strekalovskii A. S., Orlov A. V., Bimatrichnye igry i bilineinoe programmirovanie, Fizmatlit, M., 2007

[25] Gruzdeva T. V., Strekalovskii A. S., “Lokalnyi poisk v zadachakh s nevypuklymi ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 47:3 (2007), 397–413 | MR | Zbl

[26] Strekalovskii A. S., “Ob ekstremalnykh zadachakh s d.c.-ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 41:12 (2001), 1833–1843 | MR | Zbl

[27] Strekalovskii A. S., Elementy nevypukloi optimizatsii, Nauka, SO, Novosibirsk, 2003

[28] Strekalovskii A. S., “Minimiziruyuschie posledovatelnosti v zadachakh s d.c.-ogranicheniyami”, Zh. vychisl. matem. i matem. fiz., 45:3 (2005), 435–447 | MR | Zbl

[29] Vasilev F. P., Ivanitskii A. Yu., Lineinoe programmirovanie, Faktorial-Press, M., 2008 | MR

[30] Dash optimization, http://www.dashoptimization.com/

[31] Gruzdeva T. V., “Reshenie zadachi o klike svedeniem k zadache s d.c.-ogranicheniem”, Diskretnyi analiz i issl. operatsii, 15:6 (2008), 20–34 | MR