@article{ZVMMF_2009_49_9_a9,
author = {E. M. Abbasov and O. A. Dyshin and B. A. Suleimanov},
title = {Wavelet method for solving second-order quasilinear parabolic equations with a~conservative principal part},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1629--1642},
year = {2009},
volume = {49},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_9_a9/}
}
TY - JOUR AU - E. M. Abbasov AU - O. A. Dyshin AU - B. A. Suleimanov TI - Wavelet method for solving second-order quasilinear parabolic equations with a conservative principal part JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 1629 EP - 1642 VL - 49 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_9_a9/ LA - ru ID - ZVMMF_2009_49_9_a9 ER -
%0 Journal Article %A E. M. Abbasov %A O. A. Dyshin %A B. A. Suleimanov %T Wavelet method for solving second-order quasilinear parabolic equations with a conservative principal part %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2009 %P 1629-1642 %V 49 %N 9 %U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_9_a9/ %G ru %F ZVMMF_2009_49_9_a9
E. M. Abbasov; O. A. Dyshin; B. A. Suleimanov. Wavelet method for solving second-order quasilinear parabolic equations with a conservative principal part. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 9, pp. 1629-1642. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_9_a9/
[1] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva H. H., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967
[2] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR
[3] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, SO AN SSSR, Novosibirsk, 1962
[4] Karabanova O. V., Kozlov A. I., Kokurin M. Yu., “Ustoichivye konechnomernye iteratsionnye protsessy dlya resheniya nelineinykh nekorrektnykh operatornykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 42:8 (2002), 1115–1128 | MR | Zbl
[5] Bakushinskii A. B., “Iteratsionnye metody gradientnogo tipa s proektirovaniem na fiksirovannoe podprostranstvo dlya resheniya neregulyarnykh operatornykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 40:10 (2000), 1447–1450 | MR
[6] Dobeshi I., Desyat lektsii po veivletam, NITs “Regulyarnaya i khaotich. dinamika”, Moskva–Izhevsk, 2004
[7] Abbasov E. M., Dyshin O. A., Suleimanov B. A., “Primenenie veivlet-preobrazovanii k resheniyu kraevykh zadach dlya lineinykh uravnenii parabolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 48:2 (2008), 264–281 | MR | Zbl
[8] Abbasov E. M., Dyshin O. A., Suleimanov B. A., “Veivlet-metod resheniya zadachi nestatsionarnoi filtratsii s razryvnymi koeffitsientami”, Zh. vychisl. matem. i matem. fiz., 48:12 (2008), 2163–2179 | MR
[9] Kudryavtsev L. D., Matematicheskii analiz, T. 1, Vyssh. shkola, M., 1970
[10] Gavurin M. K., Lektsii po metodam vychislenii, Nauka, M., 1971 | MR | Zbl
[11] Novikov I. Ya., Stechkin S. B., “Osnovy teorii vspleskov”, Uspekhi matem. nauk, 53:6 (1998), 53–128 | MR | Zbl
[12] Dremin I. M., Ivanov O. V., Nechitailo V. A., “Veivlety i ikh ispolzovanie”, Uspekhi fiz. nauk, 171:5 (2001), 465–501 | DOI
[13] Deineka B. C., Sergienko I. V., Skopetskii V. V., Modeli i metody resheniya zadach s usloviyami sopryazheniya, Nauk. dumka, Kiev, 1998
[14] Kakhaner D., Mouler K., Nesh S., Chislennye metody i programmnoe obespechenie, Mir, M., 1998
[15] Bakushinskii A. B., Kokurin M. Yu., Yusupova H. A., “Neobkhodimye usloviya skhodimosti iteratsionnykh metodov resheniya nelineinykh operatornykh uravnenii bez svoistva regulyarnosti”, Zh. vychisl. matem. i matem. fiz., 40:7 (2000), 986–996 | MR
[16] Vasilev F. P., Chislennye metody resheniya ekstremalnykh zadach, Nauka, M., 1980 | MR
[17] Starostenko V. I., Ustoichivye chislennye metody v zadachakh gravimetrii, Nauk. dumka, Kiev, 1978 | MR | Zbl
[18] Suleimanov B. A., Abbasov E. M., Efendieva A. O., “Vibrovolnovoe vozdeistvie na plast i prizaboinuyu zonu skvazhin s uchetom effekta proskalzyvaniya”, Inzh.-fiz. zhurnal, 81:2 (2008), 358–364 | MR