Economic difference scheme for a parabolic equation with a mixed spatial derivative
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 9, pp. 1622-1628 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A modification of a well-known locally one-dimensional method for a parabolic equation is proposed. The method remains economic even if the equation involves a mixed derivative with respect to spatial variables. A model case study of the method is presented. Numerical results are given that demonstrate the efficiency of the method.
@article{ZVMMF_2009_49_9_a8,
     author = {L. F. Yukhno},
     title = {Economic difference scheme for a~parabolic equation with a~mixed spatial derivative},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1622--1628},
     year = {2009},
     volume = {49},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_9_a8/}
}
TY  - JOUR
AU  - L. F. Yukhno
TI  - Economic difference scheme for a parabolic equation with a mixed spatial derivative
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 1622
EP  - 1628
VL  - 49
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_9_a8/
LA  - ru
ID  - ZVMMF_2009_49_9_a8
ER  - 
%0 Journal Article
%A L. F. Yukhno
%T Economic difference scheme for a parabolic equation with a mixed spatial derivative
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 1622-1628
%V 49
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_9_a8/
%G ru
%F ZVMMF_2009_49_9_a8
L. F. Yukhno. Economic difference scheme for a parabolic equation with a mixed spatial derivative. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 9, pp. 1622-1628. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_9_a8/

[1] Kalitkin H. H., Chislennye metody, Nauka, M., 1978 | MR

[2] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR

[3] Bakhvalov N. S., Zhidkov H. P., Kobelkov G. M., Chislennye metody, Nauka, M., 1987 | MR | Zbl