Three-layer finite difference method for solving linear differential algebraic systems of partial differential equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 9, pp. 1594-1608 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A boundary value problem is examined for a linear differential algebraic system of partial differential equations with a special structure of the associate matrix pencil. The use of an appropriate transformation makes it possible to split such a system into a system of ordinary differential equations, a hyperbolic system, and a linear algebraic system. A three-layer finite difference method is applied to solve the resulting problem numerically. A theorem on the stability and the convergence of this method is proved, and some numerical results are presented.
@article{ZVMMF_2009_49_9_a6,
     author = {S. V. Gaidomak},
     title = {Three-layer finite difference method for solving linear differential algebraic systems of partial differential equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1594--1608},
     year = {2009},
     volume = {49},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_9_a6/}
}
TY  - JOUR
AU  - S. V. Gaidomak
TI  - Three-layer finite difference method for solving linear differential algebraic systems of partial differential equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 1594
EP  - 1608
VL  - 49
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_9_a6/
LA  - ru
ID  - ZVMMF_2009_49_9_a6
ER  - 
%0 Journal Article
%A S. V. Gaidomak
%T Three-layer finite difference method for solving linear differential algebraic systems of partial differential equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 1594-1608
%V 49
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_9_a6/
%G ru
%F ZVMMF_2009_49_9_a6
S. V. Gaidomak. Three-layer finite difference method for solving linear differential algebraic systems of partial differential equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 9, pp. 1594-1608. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_9_a6/

[1] Demidenko G. V., Uspenskii C. B., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauchn. kniga, Novosibirsk, 1998 | MR | Zbl

[2] Ruschinskii V. M., “Prostranstvennye lineinye i nelineinye modeli kotlogeneratorov”, Vopr. identifikatsii i modelirovaniya, 1968, 8–15

[3] Campbell S. L., Marszalek W., “The index of an infinite dimensional implicit system”, Math. and Comput. Modeling of Systems, 5:1 (1999), 18–42 | DOI | MR | Zbl

[4] Lucht W., Strehmel K., Eichler-Liebenow C., “Indexes and special discretization methods for linear partial differential algebraic equations”, BIT, 39:3 (1999), 484–512 | DOI | MR | Zbl

[5] Debrabant K., Strehmel K., “Convergence of Runge–Kutta methods applied to linear partial differential-algebraic equations”, Appl. Numer. Math., 53 (2005), 213–229 | DOI | MR | Zbl

[6] Tischendorf C., “Modeling circuit systems coupled with distributed semiconductor equations”, Modeling, Simulation and Optimizat. Integr. Circuits, Internat. Ser. Numer. Math., 146, Birkhauser, Basel, 2003, 229–247 | MR | Zbl

[7] Gaidomak C. B., Chistyakov V. F., “O sistemakh ne tipa Koshi–Kovalevskoi indeksa (1, k)”, Vychisl. tekhnologii, 10:2 (2005), 45–59 | Zbl

[8] Gaidomak C. B., “O chislennom reshenii vyrozhdennykh giperbolicheskikh sistem metodom splain-kollokatsii”, Tr. Mezhdunar. konf.: “Differents. ur-niya, teorii funktsii i prilozh.”, Novosibirsk, 2007, 568–569

[9] Chistyakov V. F., Algebro-differentsialnye operatory s konechnomernym yadrom, Sibirskaya izdat. firma RAN, Nauka, Novosibirsk, 1996 | MR | Zbl

[10] Godunov S. K., Uravneniya matematicheskoi fiziki, Nauka, M., 1971 | MR

[11] Samarskii A. A., Tulin A. B., Ustoichivost raznostnykh skhem, Editorial URSS, M., 2005

[12] Gaidomak C. B., “O sravnenii metoda pryamykh i raznostnogo metoda pri reshenii vyrozhdennykh sistem indeksa (1, 1)”, Tr. KhIII-i Baikalskoi Mezhdunar. shkoly-seminara “Metody optimizatsii i ikh prilozh.” T. 3. Obratnye i nekorrektnye zadachi, Severobaikalsk, 2005