A discrete mathematical model of the dynamic evolution of a transportation network
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 9, pp. 1565-1570 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A dynamic model of the evolution of a transportation network is proposed. The main feature of this model is that the evolution of the transportation network is not a process of centralized transportation optimization. Rather, its dynamic behavior is a result of the system self-organization that occurs in the course of the satisfaction of needs in goods transportation and the evolution of the infrastructure of the network nodes. Nonetheless, the possibility of soft control of the network evolution direction is taken into account.
@article{ZVMMF_2009_49_9_a2,
     author = {G. G. Malinetskii and M. E. Stepantsov},
     title = {A~discrete mathematical model of the dynamic evolution of a~transportation network},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1565--1570},
     year = {2009},
     volume = {49},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_9_a2/}
}
TY  - JOUR
AU  - G. G. Malinetskii
AU  - M. E. Stepantsov
TI  - A discrete mathematical model of the dynamic evolution of a transportation network
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 1565
EP  - 1570
VL  - 49
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_9_a2/
LA  - ru
ID  - ZVMMF_2009_49_9_a2
ER  - 
%0 Journal Article
%A G. G. Malinetskii
%A M. E. Stepantsov
%T A discrete mathematical model of the dynamic evolution of a transportation network
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 1565-1570
%V 49
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_9_a2/
%G ru
%F ZVMMF_2009_49_9_a2
G. G. Malinetskii; M. E. Stepantsov. A discrete mathematical model of the dynamic evolution of a transportation network. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 9, pp. 1565-1570. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_9_a2/

[1] L. Bianco, A. A. Bella (eds.), Freight transport planning and logistics, Springer, Berlin etc., 1967

[2] Butov A. C., Gaskarov D. V., Egorov A. H., Krupenika H. B., Transportnye sistemy. Modelirovanie i upravlenie, Sudostroenie, SPb., 2001

[3] Popkov Yu. S., Posokhin M. V., Gutnov A. E., Shmulyan B. A., Sistemnyi analiz i problemy razvitiya gorodov, Nauka, M., 1983

[4] Livshits V. V., “Matematicheskaya model sluchaino-determinirovannogo vybora i ee primenenie dlya rascheta trudovykh korrespondentsii”, Avtomatizatsiya protsessov gradostroitelnogo proektirovaniya, TsNIIP gradostroitelstva, M., 1973, 39–57

[5] Haegerstrand T., Innovation diffusion as a spatial process, CWK Gleerup, Lund, 1953

[6] Beckmann M. J., “A continuous model of transportation”, Econometrica, 20:4 (1952), 643–660 | DOI | MR | Zbl

[7] Malkov A. C., O matematicheskom modelirovanii tovaropotokov, Preprint No 11, IPMatem. RAN, M., 2005

[8] Shvetsov V. I., Aliev A. C., Matematicheskoe modelirovanie zagruzki transportnykh setei, URSS, M., 2003