Mixed problem for the equation governing inertia-gravity waves in the Boussinesq approximation in a unbounded cylindrical domain
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 9, pp. 1659-1675 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The unique solvability of an initial-boundary value problem for the equation governing inertia-gravity waves in the Boussinesq approximation in an unbounded multidimensional cylindrical domain is studied. The existence and uniqueness of a weak solution is proved, and its asymptotic behavior at long times is analyzed. The proofs are based on the Green's function constructed in explicit form for the corresponding stationary problem.
@article{ZVMMF_2009_49_9_a12,
     author = {B. A.-G. Iskenderov and D. Yu. Mamedov and S. E. Suleimanov},
     title = {Mixed problem for the equation governing inertia-gravity waves in the {Boussinesq} approximation in a~unbounded cylindrical domain},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1659--1675},
     year = {2009},
     volume = {49},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_9_a12/}
}
TY  - JOUR
AU  - B. A.-G. Iskenderov
AU  - D. Yu. Mamedov
AU  - S. E. Suleimanov
TI  - Mixed problem for the equation governing inertia-gravity waves in the Boussinesq approximation in a unbounded cylindrical domain
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 1659
EP  - 1675
VL  - 49
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_9_a12/
LA  - ru
ID  - ZVMMF_2009_49_9_a12
ER  - 
%0 Journal Article
%A B. A.-G. Iskenderov
%A D. Yu. Mamedov
%A S. E. Suleimanov
%T Mixed problem for the equation governing inertia-gravity waves in the Boussinesq approximation in a unbounded cylindrical domain
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 1659-1675
%V 49
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_9_a12/
%G ru
%F ZVMMF_2009_49_9_a12
B. A.-G. Iskenderov; D. Yu. Mamedov; S. E. Suleimanov. Mixed problem for the equation governing inertia-gravity waves in the Boussinesq approximation in a unbounded cylindrical domain. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 9, pp. 1659-1675. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_9_a12/

[1] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977 | MR

[2] Ikezi X., “Eksperimentalnoe issledovanie solitonov v plazme”, Solitony v deistvii, Mir, M., 1977

[3] Demidenko G. V., Uspenskii C. B., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauchn. kniga, Novosibirsk, 1988

[4] Galperin S. A., “Zadacha Koshi dlya obschikh sistem lineinykh uravnenii s chastnymi proizvodnymi”, Tr. Mosk. matem. ob-va, 9, 1960, 401–423

[5] Gabov S. A., Sveshnikov A. G., Zadachi dinamiki stratifitsirovannykh zhidkostei, Nauka, M., 1986 | MR

[6] Gabov S. A., Sveshnikov A. G., Lineinye zadachi teorii nestatsionarnykh vnutrennikh voln, Nauka, M., 1986

[7] Gabov C. A., Orazov B. B., “Ob uravnenii $(\partial^2/\partial t^2)[u_{xx}-u]+u_{xx}=0$ i nekotorykh svyazannykh s nimi zadachakh”, Zh. vychisl. matem. i matem. fiz., 26:1 (1986), 92–102 | MR | Zbl

[8] Gabov S. A., Novye zadachi matematicheskoi fiziki, Nauka, M., 1998 | Zbl

[9] Iskenderov B. A., Sardarov V. G., “Smeshannaya zadacha dlya uravneniya Bussineska v tsilindricheskoi oblasti i povedenie ee resheniya pri bolshikh znacheniyakh vremeni”, Zh. vychisl. matem. i matem. fiz., 44:3 (2004), 514–527 | MR | Zbl

[10] Iskenderov B. A., Mamedova A. I., “Smeshannaya zadacha dlya uravneniya vnutrennykh gravitatsionnykh voln v neogranichennoi tsilindricheskoi oblasti”, Zh. vychisl. matem. i matem. fiz., 46:8 (2006), 1475–1493 | MR

[11] Mikhailov V. P., Differentsialnye uravneniya v chastnykh proizvodnykh, Nauka, M., 1983 | MR

[12] Mizokhata S., Teoriya uravnenii s chastnymi proizvodnymi, Mir, M., 1977

[13] Nikiforov A. B., Uvarov V. V., Spetsialnye funktsii matematicheskoi fiziki, Nauka, M., 1974 | MR

[14] Iskenderov B. A., “Principles of radiation for elliptic equation in the cylindrical domain”, Colloquia Math. Sociotatis Janos Bolyai. Szeged, Hungary, 1988, 249–261 | MR

[15] Fedoryuk M. V., Asimptotika, integraly i ryady, Nauka, M., 1987 | MR