@article{ZVMMF_2009_49_9_a10,
author = {P. V. Vinogradova and A. G. Zarubin},
title = {Error estimates for the {Galerkin} method as applied to time-dependent equations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1643--1651},
year = {2009},
volume = {49},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_9_a10/}
}
TY - JOUR AU - P. V. Vinogradova AU - A. G. Zarubin TI - Error estimates for the Galerkin method as applied to time-dependent equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 1643 EP - 1651 VL - 49 IS - 9 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_9_a10/ LA - ru ID - ZVMMF_2009_49_9_a10 ER -
%0 Journal Article %A P. V. Vinogradova %A A. G. Zarubin %T Error estimates for the Galerkin method as applied to time-dependent equations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2009 %P 1643-1651 %V 49 %N 9 %U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_9_a10/ %G ru %F ZVMMF_2009_49_9_a10
P. V. Vinogradova; A. G. Zarubin. Error estimates for the Galerkin method as applied to time-dependent equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 9, pp. 1643-1651. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_9_a10/
[1] Kantorovich L. V., “Funktsionalnyi analiz i prikladnaya matematika”, Uspekhi matem. nauk, 3:6 (1948), 89–185 | MR | Zbl
[2] Krein S. G., Lineinye differentsialnye uravneniya v banakhovykh prostranstvakh, Nauka, M., 1967 | MR
[3] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR
[4] Gaevskii X., Grëger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR
[5] Fattorinin H. O., The Cauchy problem, Addison Veslly Publ. Co., Massachusets, 1983 | MR
[6] Vishik M. I., Ladyzhenskaya O. A., “Kraevye zadachi dlya uravnenii v chastnykh proizvodnykh i nekotorykh klassov operatornykh uravnenii”, Uspekhi matem. nauk, 6:11 (1956), 41–97 | MR | Zbl
[7] Vishik M. I., “Pervaya kraevaya zadacha dlya kvazilineinogo uravneniya parabolicheskogo tipa”, Matem. sb., 41(83) (1957), 105–128
[8] Zarubin A. G., “O skorosti skhodimosti metoda Faedo-Galerkina dlya lineinykh nestatsionarnykh uravnenii”, Differents. ur-niya, 18:4 (1982), 639–645 | MR | Zbl
[9] Zarubin A. G., Issledovanie metodom drobnykh stepenei proektsionnykh protsedur resheniya lineinykh i kvazilineinykh uravnenii, Dis. $\dots$ dokt. fiz.-matem. nauk, Khabarovsk, 1986 | MR | Zbl
[10] Oya P. E., “O skhodimosti i ustoichivosti metoda Galerkina dlya parabolicheskikh uravnenii s differentsiruemymi operatorami”, Uch. zap. Tartusk. un-ta, 374, TGU, Tartu, 1975, 194–210
[11] Vainikko G. M., Oya P. E., “O skhodimosti i bystrote skhodimosti metoda Galerkina dlya abstraktnykh evolyutsionnykh uravnenii”, Differents. ur-niya, 11:7 (1975), 1269–1277 | MR | Zbl
[12] Smagin V. V., “Otsenki skorosti skhodimosti proektsionnogo i proektsionno-raznostnogo metodov dlya slabo razreshimykh parabolicheskikh uravnenii”, Matem. sb., 188:3 (1997), 143–160 | MR
[13] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | MR | Zbl
[14] Sobolevskii P. E., “Ob uravneniyakh s operatorami, obrazuyuschimi ostryi ugol”, Dokl. AN SSSR, 116:5 (1957), 754–757 | MR
[15] Marchuk G. I., Matematicheskoe modelirovanie v probleme okruzhayuschei sredy, Nauka, M., 1982 | MR
[16] Glushko V. P., Krein S. G., “Neravenstva dlya norm proizvodnykh v prostranstvakh $L_p$ s vesom”, Sibirskii matem. zhurnal, 1:3 (1960), 343–382 | Zbl