Error estimates for the Galerkin method as applied to time-dependent equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 9, pp. 1643-1651 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A projection method is studied as applied to the Cauchy problem for an operator-differential equation with a non-self-adjoint operator. The operator is assumed to be sufficiently smooth. The linear spans of eigenelements of a self-adjoint operator are used as projection subspaces. New asymptotic estimates for the convergence rate of approximate solutions and their derivatives are obtained. The method is applied to initial-boundary value problems for parabolic equations.
@article{ZVMMF_2009_49_9_a10,
     author = {P. V. Vinogradova and A. G. Zarubin},
     title = {Error estimates for the {Galerkin} method as applied to time-dependent equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1643--1651},
     year = {2009},
     volume = {49},
     number = {9},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_9_a10/}
}
TY  - JOUR
AU  - P. V. Vinogradova
AU  - A. G. Zarubin
TI  - Error estimates for the Galerkin method as applied to time-dependent equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 1643
EP  - 1651
VL  - 49
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_9_a10/
LA  - ru
ID  - ZVMMF_2009_49_9_a10
ER  - 
%0 Journal Article
%A P. V. Vinogradova
%A A. G. Zarubin
%T Error estimates for the Galerkin method as applied to time-dependent equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 1643-1651
%V 49
%N 9
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_9_a10/
%G ru
%F ZVMMF_2009_49_9_a10
P. V. Vinogradova; A. G. Zarubin. Error estimates for the Galerkin method as applied to time-dependent equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 9, pp. 1643-1651. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_9_a10/

[1] Kantorovich L. V., “Funktsionalnyi analiz i prikladnaya matematika”, Uspekhi matem. nauk, 3:6 (1948), 89–185 | MR | Zbl

[2] Krein S. G., Lineinye differentsialnye uravneniya v banakhovykh prostranstvakh, Nauka, M., 1967 | MR

[3] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[4] Gaevskii X., Grëger K., Zakharias K., Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR

[5] Fattorinin H. O., The Cauchy problem, Addison Veslly Publ. Co., Massachusets, 1983 | MR

[6] Vishik M. I., Ladyzhenskaya O. A., “Kraevye zadachi dlya uravnenii v chastnykh proizvodnykh i nekotorykh klassov operatornykh uravnenii”, Uspekhi matem. nauk, 6:11 (1956), 41–97 | MR | Zbl

[7] Vishik M. I., “Pervaya kraevaya zadacha dlya kvazilineinogo uravneniya parabolicheskogo tipa”, Matem. sb., 41(83) (1957), 105–128

[8] Zarubin A. G., “O skorosti skhodimosti metoda Faedo-Galerkina dlya lineinykh nestatsionarnykh uravnenii”, Differents. ur-niya, 18:4 (1982), 639–645 | MR | Zbl

[9] Zarubin A. G., Issledovanie metodom drobnykh stepenei proektsionnykh protsedur resheniya lineinykh i kvazilineinykh uravnenii, Dis. $\dots$ dokt. fiz.-matem. nauk, Khabarovsk, 1986 | MR | Zbl

[10] Oya P. E., “O skhodimosti i ustoichivosti metoda Galerkina dlya parabolicheskikh uravnenii s differentsiruemymi operatorami”, Uch. zap. Tartusk. un-ta, 374, TGU, Tartu, 1975, 194–210

[11] Vainikko G. M., Oya P. E., “O skhodimosti i bystrote skhodimosti metoda Galerkina dlya abstraktnykh evolyutsionnykh uravnenii”, Differents. ur-niya, 11:7 (1975), 1269–1277 | MR | Zbl

[12] Smagin V. V., “Otsenki skorosti skhodimosti proektsionnogo i proektsionno-raznostnogo metodov dlya slabo razreshimykh parabolicheskikh uravnenii”, Matem. sb., 188:3 (1997), 143–160 | MR

[13] Mikhlin S. G., Variatsionnye metody v matematicheskoi fizike, Nauka, M., 1970 | MR | Zbl

[14] Sobolevskii P. E., “Ob uravneniyakh s operatorami, obrazuyuschimi ostryi ugol”, Dokl. AN SSSR, 116:5 (1957), 754–757 | MR

[15] Marchuk G. I., Matematicheskoe modelirovanie v probleme okruzhayuschei sredy, Nauka, M., 1982 | MR

[16] Glushko V. P., Krein S. G., “Neravenstva dlya norm proizvodnykh v prostranstvakh $L_p$ s vesom”, Sibirskii matem. zhurnal, 1:3 (1960), 343–382 | Zbl