Fast technique for solving the $N$-body problem in flow simulation by vortex methods
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 8, pp. 1458-1465 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A fast algorithm is proposed for solving the $N$-body problem arising in flow simulation when the flow is represented as a set of many interacting vortex elements. The algorithm is used to compute the flow over a circular cylinder at high Reynolds numbers.
@article{ZVMMF_2009_49_8_a8,
     author = {G. Ya. Dynnikova},
     title = {Fast technique for solving the $N$-body problem in flow simulation by vortex methods},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1458--1465},
     year = {2009},
     volume = {49},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a8/}
}
TY  - JOUR
AU  - G. Ya. Dynnikova
TI  - Fast technique for solving the $N$-body problem in flow simulation by vortex methods
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 1458
EP  - 1465
VL  - 49
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a8/
LA  - ru
ID  - ZVMMF_2009_49_8_a8
ER  - 
%0 Journal Article
%A G. Ya. Dynnikova
%T Fast technique for solving the $N$-body problem in flow simulation by vortex methods
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 1458-1465
%V 49
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a8/
%G ru
%F ZVMMF_2009_49_8_a8
G. Ya. Dynnikova. Fast technique for solving the $N$-body problem in flow simulation by vortex methods. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 8, pp. 1458-1465. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a8/

[1] Sarpkaiya T., Vychislitelnye metody vikhrei. Frimanovskaya lektsiya (1988), Sovrem. mashinostr. Ser. A, 10, 1989

[2] Stock M. J., Summary of vortex methods literature (a living document rife with opinion), URL: , 2002–2007 http://mark.technolope.org/ research/vortex-methods-linerature.pdf

[3] Belotserkovskii S. M., Ginevskii A. C., Modelirovanie turbulentnykh strui i sledov na osnove metoda diskretnykh vikhrei, Fizmatlit, M., 1995

[4] Chorin A. J., “Numerical study of slightly viscous flow”, J. Fluid Mech., 57:4 (1973), 785–796 | DOI | MR

[5] Ogami Y., Akamatsu T., “Viscous flow simulation using he discrete vortex model”, Comput. and Fluids, 19:3–4 (1991), 314–324

[6] Dynnikova G. Ya., “Dvizhenie vikhrei v dvumernykh techeniyakh vyazkoi zhidkosti”, Izv. RAN. Mekhan. zhidkosti i gaza, 2003, no. 5, 11–19 | MR | Zbl

[7] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Nauka, M., 1978 | MR

[8] Strickland J. H., Baty R. S., An overview of fast multipole methods, Sandia Nat. Lab. Rep. SAND95-2405, November, 1995

[9] Rankin W. T., “A portable distributed implementation of the parallel multipole tree algorithm”, High Performance Distributed Computing, Proc. IV IEEE Internat. (Symp. on 2–4 Aug., 1995), 1995, 17–22

[10] Bielloch G., Narlikar G., “A practical comparison of $n$-body algorithms”, Parallel Algorithms: Third DIMACS Implementation Challenge (October 17–19, 1994), AMS Bookstore, 1997

[11] Dynnikova G. Ya., “Lagranzhev podkhod k resheniyu nestatsionarnykh uravnenii Nave–Stoksa”, Dokl. RAN, 399:1 (2004), 42–46 | MR

[12] Andronov P. R., Guvernyuk S. V., Dynnikova G. Ya., Vikhrevye metody rascheta nestatsionarnykh gidrodinamicheskikh nagruzok, Izd-vo MGU, M., 2006

[13] Guvernyuk S. V., Dynnikova G. Ya., “Modelirovanie obtekaniya koleblyuschegosya profilya metodom vyazkikh vikhrevykh domenov”, Izv. RAN. Mekhan. zhidkosti i gaza, 2007, no. 1, 3–14 | MR

[14] Barnes J., Hut P., “A hierarchical $O(N\log N)$ force-calculation algorithm”, Nature, 324:4 (1986), 446–449 | DOI

[15] Clarke N. R., Putty O. R., “Construction and validation of a discrete vortex method for the two-dimensional incompressible Navier–Stokes equations”, Comput. Fluids, 23:6 (1994), 751–783 | DOI | Zbl

[16] Dynnikova G. Ya., “Raschet obtekaniya krugovogo tsilindra na osnove dvumernykh uravnenii Nave–Stoksa pri bolshikh chislakh Re s vysokim razresheniem v pogranichnom sloe”, Dokl. RAN, 422:6 (2008), 755–757 | Zbl

[17] Wieselsberger C., “Neuere Feststellungen uber die Gesetze des Flussigkeits- und Luftwiderstands”, Phys. Z, 22 (1921), 321–328

[18] Roshko A., “Experiments on the flow past a circular cylinder at very high Reinolds number”, J. Flued Mech., 10 (1961), 345–356 | DOI | Zbl

[19] Singh S. P., Mittal S., “Flow past a cylinder: shear layer instability and drag crisis”, Internat. J. Numer. Meth. Fluids, 47 (2005), 75–98 | DOI | Zbl