@article{ZVMMF_2009_49_8_a8,
author = {G. Ya. Dynnikova},
title = {Fast technique for solving the $N$-body problem in flow simulation by vortex methods},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1458--1465},
year = {2009},
volume = {49},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a8/}
}
TY - JOUR AU - G. Ya. Dynnikova TI - Fast technique for solving the $N$-body problem in flow simulation by vortex methods JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 1458 EP - 1465 VL - 49 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a8/ LA - ru ID - ZVMMF_2009_49_8_a8 ER -
%0 Journal Article %A G. Ya. Dynnikova %T Fast technique for solving the $N$-body problem in flow simulation by vortex methods %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2009 %P 1458-1465 %V 49 %N 8 %U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a8/ %G ru %F ZVMMF_2009_49_8_a8
G. Ya. Dynnikova. Fast technique for solving the $N$-body problem in flow simulation by vortex methods. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 8, pp. 1458-1465. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a8/
[1] Sarpkaiya T., Vychislitelnye metody vikhrei. Frimanovskaya lektsiya (1988), Sovrem. mashinostr. Ser. A, 10, 1989
[2] Stock M. J., Summary of vortex methods literature (a living document rife with opinion), URL: , 2002–2007 http://mark.technolope.org/ research/vortex-methods-linerature.pdf
[3] Belotserkovskii S. M., Ginevskii A. C., Modelirovanie turbulentnykh strui i sledov na osnove metoda diskretnykh vikhrei, Fizmatlit, M., 1995
[4] Chorin A. J., “Numerical study of slightly viscous flow”, J. Fluid Mech., 57:4 (1973), 785–796 | DOI | MR
[5] Ogami Y., Akamatsu T., “Viscous flow simulation using he discrete vortex model”, Comput. and Fluids, 19:3–4 (1991), 314–324
[6] Dynnikova G. Ya., “Dvizhenie vikhrei v dvumernykh techeniyakh vyazkoi zhidkosti”, Izv. RAN. Mekhan. zhidkosti i gaza, 2003, no. 5, 11–19 | MR | Zbl
[7] Loitsyanskii L. G., Mekhanika zhidkosti i gaza, Nauka, M., 1978 | MR
[8] Strickland J. H., Baty R. S., An overview of fast multipole methods, Sandia Nat. Lab. Rep. SAND95-2405, November, 1995
[9] Rankin W. T., “A portable distributed implementation of the parallel multipole tree algorithm”, High Performance Distributed Computing, Proc. IV IEEE Internat. (Symp. on 2–4 Aug., 1995), 1995, 17–22
[10] Bielloch G., Narlikar G., “A practical comparison of $n$-body algorithms”, Parallel Algorithms: Third DIMACS Implementation Challenge (October 17–19, 1994), AMS Bookstore, 1997
[11] Dynnikova G. Ya., “Lagranzhev podkhod k resheniyu nestatsionarnykh uravnenii Nave–Stoksa”, Dokl. RAN, 399:1 (2004), 42–46 | MR
[12] Andronov P. R., Guvernyuk S. V., Dynnikova G. Ya., Vikhrevye metody rascheta nestatsionarnykh gidrodinamicheskikh nagruzok, Izd-vo MGU, M., 2006
[13] Guvernyuk S. V., Dynnikova G. Ya., “Modelirovanie obtekaniya koleblyuschegosya profilya metodom vyazkikh vikhrevykh domenov”, Izv. RAN. Mekhan. zhidkosti i gaza, 2007, no. 1, 3–14 | MR
[14] Barnes J., Hut P., “A hierarchical $O(N\log N)$ force-calculation algorithm”, Nature, 324:4 (1986), 446–449 | DOI
[15] Clarke N. R., Putty O. R., “Construction and validation of a discrete vortex method for the two-dimensional incompressible Navier–Stokes equations”, Comput. Fluids, 23:6 (1994), 751–783 | DOI | Zbl
[16] Dynnikova G. Ya., “Raschet obtekaniya krugovogo tsilindra na osnove dvumernykh uravnenii Nave–Stoksa pri bolshikh chislakh Re s vysokim razresheniem v pogranichnom sloe”, Dokl. RAN, 422:6 (2008), 755–757 | Zbl
[17] Wieselsberger C., “Neuere Feststellungen uber die Gesetze des Flussigkeits- und Luftwiderstands”, Phys. Z, 22 (1921), 321–328
[18] Roshko A., “Experiments on the flow past a circular cylinder at very high Reinolds number”, J. Flued Mech., 10 (1961), 345–356 | DOI | Zbl
[19] Singh S. P., Mittal S., “Flow past a cylinder: shear layer instability and drag crisis”, Internat. J. Numer. Meth. Fluids, 47 (2005), 75–98 | DOI | Zbl