@article{ZVMMF_2009_49_8_a7,
author = {H. A. Zedan and S. Sh. Tantawy},
title = {Solution of {Davey{\textendash}Stewartson} equations by homotopy perturbation method},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1451--1457},
year = {2009},
volume = {49},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a7/}
}
TY - JOUR AU - H. A. Zedan AU - S. Sh. Tantawy TI - Solution of Davey–Stewartson equations by homotopy perturbation method JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 1451 EP - 1457 VL - 49 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a7/ LA - en ID - ZVMMF_2009_49_8_a7 ER -
%0 Journal Article %A H. A. Zedan %A S. Sh. Tantawy %T Solution of Davey–Stewartson equations by homotopy perturbation method %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2009 %P 1451-1457 %V 49 %N 8 %U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a7/ %G en %F ZVMMF_2009_49_8_a7
H. A. Zedan; S. Sh. Tantawy. Solution of Davey–Stewartson equations by homotopy perturbation method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 8, pp. 1451-1457. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a7/
[1] He J. H., “Homotopy perturbation technique”, Comput. Meth. Appl. Mech. Engng., 178 (1999), 257–262 | DOI | MR | Zbl
[2] Cveticanin L., “Homotopy perturbation method for pure nonlinear differential equation”, Chaos, Solitons and Fractals, 30 (2006), 1221–1230 | DOI | Zbl
[3] El-Shahed M., “Application of He's homotopy perturbation method to Volterra's integro-differential equation”, Int. J. Nonlinear Sei. Numer. Simul., 6:2 (2005), 163–168 | MR
[4] He J. H., “Asymptotology by homotopy perturbation method”, Appl. Math. Comput., 156 (2004), 591–596 | DOI | MR | Zbl
[5] He J. H., “The homotopy perturbation method for nonlinear oscillators with discontinuities”, Appl. Math. Comput., 151 (2004), 287–292 | DOI | MR | Zbl
[6] He J. H., “Applicaton of the homotopy perturbaton method to nonlinear wave equations”, Chaos, Solitons and Fractals, 26 (2005), 695–700 | DOI | Zbl
[7] He J. H., “Comparison of homotopy perturbation method and homotopy analysis method”, Appl. Math. Comput., 156 (2004), 527–539 | DOI | MR | Zbl
[8] He J. H., “Homotopy perturbation method for bifurcation of nonlinear problems”, Internat. J. Nonlinear Sci. Numer. Simul., 6:2 (2005), 207–208 | Zbl
[9] Rafei M., Ganji D. D., “Explicit solutions of Helmholtz equation and fifth-order KdV equation using homotopy perturbation method”, Internat. J. Nonlinear Sci. Numer. Simul., 7:3 (2006), 321–329
[10] Ganji D. D., Rafei M., “Solitary wave solutions for a generalized Hirota–Satsuma coupled KdV equation by homotopy perturbation method”, Phys. Letts A, 356 (2006), 131–137 | DOI | MR | Zbl
[11] Abbasbandy S., “Homotopy perturbation method for quadratic Riccati differential equation and comparison with Adomian's decomposition method”, Appl. Math. and Comput., 172 (2006), 485–490 | DOI | MR | Zbl
[12] Abbasbandy S., “Numerical solutions of the integral equations: Homotopy perturbation method and Adomian's decomposition method”, Appl. Math. and Comput., 173 (2006), 493–500 | DOI | MR | Zbl
[13] Abbasbandy S., “Application of He's homotopy perturbation method for Laplace transform”, Chaos, Solitons and Fractals, 30 (2006), 1206–1212 | DOI | Zbl
[14] McConnell M., Fokas A. S., Pelloni B., “Localised coherent solutions of the DSI and DSU equations – a numerical study”, Math. and Comput. in Simul., 69 (2005), 424–438 | DOI | MR | Zbl
[15] Davey A., Stewartson K., “On three-dimensional packets of surfaces waves”, Proc. Roy Soc. London. Ser. A, 338 (1974), 101–110 | DOI | MR | Zbl