Multilayered model in optics and quantum mechanics
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 8, pp. 1437-1450 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Three types of dispersion equations are analyzed that describe the eigenvalues of the effective refractive index of a multilayer plane optical waveguide and the energy eigenvalues of a quantum particle placed in a piecewise constant potential field. The first equation (D1) is derived by setting to zero the determinant of the system of linear equations produced by matching the solutions in the layers. The second equation (D2) is obtained using the well-known method of characteristic matrices. The third equation has been obtained in the general case by the author and is known as a multilayer equation. Simple relations between the three equations are established. It is shown that the set of roots of D2 exactly coincides with the set of eigenvalues of the multilayer problem, while the roots of D1 and the multilayer equation contain those equal to the refractive index in the optical case (or to the potential in the quantum case) in internal layers of the system, which may be superfluous. Examples are presented.
@article{ZVMMF_2009_49_8_a6,
     author = {M. D. Kovalev},
     title = {Multilayered model in optics and quantum mechanics},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1437--1450},
     year = {2009},
     volume = {49},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a6/}
}
TY  - JOUR
AU  - M. D. Kovalev
TI  - Multilayered model in optics and quantum mechanics
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 1437
EP  - 1450
VL  - 49
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a6/
LA  - ru
ID  - ZVMMF_2009_49_8_a6
ER  - 
%0 Journal Article
%A M. D. Kovalev
%T Multilayered model in optics and quantum mechanics
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 1437-1450
%V 49
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a6/
%G ru
%F ZVMMF_2009_49_8_a6
M. D. Kovalev. Multilayered model in optics and quantum mechanics. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 8, pp. 1437-1450. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a6/

[1] T. Tamir (red.), Voprosy optoelektroniki, Mir, M., 1991

[2] Born M., Volf E., Osnovy optiki, Nauka, M., 1970

[3] Yariv A., Yukh P., Opticheskie volny v kristallakh, eds. I. N. Sisakyan, Mir, M., 1987

[4] Golant E. I., Golant K. M., “Novyi metod rascheta spektra i radiatsionnykh poter vytekayuschikh mod mnogosloinykh opticheskikh volnovodov”, Zh. tekhn. fiz., 76:8 (2006), 99–107

[5] Davydov A. C., Kvantovaya mekhanika, Nauka, M., 1973 | MR

[6] Maier A. A., Kovalev M. D., “Dispersionnoe uravnenie dlya sobstvennykh znachenii effektivnogo pokazatelya prelomleniya v mnogosloinoi volnovodnoi strukture”, Dokl. RAN, 407:6 (2006), 766–769 | MR

[7] Maier A. A., “Uravnenie dlya sobstvennykh znachenii energii v MWQ-strukture s proizvolnym chislom kvantovykh yam”, Dokl. RAN, 407:5 (2006), 613–617 | MR

[8] Kovalev M. D., “Mnogosloinoe uravnenie”, Chebyshevskii sb., 7, no. 2(18), Tula, 2006, 99–106 | MR

[9] Maier A. A., “Uravnenie dlya sobstvennykh znachenii energii v MWQ-strukture s razlichnymi effektivnymi massami chastitsy v sloyakh”, Dokl. RAN, 410:5 (2006), 618–619 | Zbl

[10] Kovalëv M. D., “Chislo energeticheskikh urovnei chastitsy v grebenchatoi strukture”, Zh. vychisl. matem. i matem. fiz., 47:9 (2007), 1557–1575 | MR

[11] Kovalëv M. D., “Ob energeticheskikh urovnyakh chastitsy v grebenchatoi strukture”, Dokl. RAN, 419:6 (2008), 749–749 | MR | Zbl

[12] Kovalëv M. D., “Chislo energeticheskikh urovnei chastitsy v ravnomernoi grebenchatoi strukture”, Zh. vychisl. matem. i matem. fiz., 48:10 (2008), 1888–1907 | MR | Zbl

[13] Kovalëv M. D., “Chislo TE- i TM-mod v mnogosloinom planarnom volnovode so sloyami dvukh tipov”, Elektromagn. volny i elektronnye sistemy, 14:2 (2009), 4–17 | MR