Eigenvalue analysis for a rack in a power-law material
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 8, pp. 1399-1415 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A nonlinear eigenvalue problem related to determining the stress and strain fields near the tip of a transverse crack in a power-law material is studied. The eigenvalues are found by a perturbation method based on representations of an eigenvalue, the corresponding eigenfunction, and the material nonlinearity parameter in the form of series expansions in powers of a small parameter equal to the difference between the eigenvalues in the linear and nonlinear problems. The resulting eigenvalues are compared with the accurate numerical solution of the nonlinear eigenvalue problem.
@article{ZVMMF_2009_49_8_a4,
     author = {L. V. Stepanova},
     title = {Eigenvalue analysis for a~rack in a~power-law material},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1399--1415},
     year = {2009},
     volume = {49},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a4/}
}
TY  - JOUR
AU  - L. V. Stepanova
TI  - Eigenvalue analysis for a rack in a power-law material
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 1399
EP  - 1415
VL  - 49
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a4/
LA  - ru
ID  - ZVMMF_2009_49_8_a4
ER  - 
%0 Journal Article
%A L. V. Stepanova
%T Eigenvalue analysis for a rack in a power-law material
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 1399-1415
%V 49
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a4/
%G ru
%F ZVMMF_2009_49_8_a4
L. V. Stepanova. Eigenvalue analysis for a rack in a power-law material. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 8, pp. 1399-1415. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a4/

[1] Hutchinson J. W., “Singular behaviour at the end of tensile crack in a hardening material”, J. Mech. Phys. Solids, 16:1 (1968), 13–31 | DOI | Zbl

[2] Hutchinson J. W., “Plastic stress and strain fields at a crack tip”, J. Mech. Phys. Solids, 16:5 (1968), 337–349 | DOI | MR

[3] Rice J. R., Rosengren G. F., “Plane strain deformation near a crack tip in a power-law hardening material”, J. Mech. Phys. Solids, 16:1 (1968), 1–12 | DOI | Zbl

[4] Yuan F. G., Yang S., “Analytical solutions of fully plastic crack-tip higher order fields under antiplane shear”, Internat. J. Fracture, 69 (1994), 1–26 | DOI

[5] Nikishkov G. P., “An algorithm and a computer program for the three-term asymptotic expansion of elastic-plastic crack tip stress and displacement fields”, Engng Fract. Mech., 50:1 (1995), 65–83 | DOI

[6] Nguyen B. N., Onck P. R., Van Der Giessen E., “On higher-order crack-tip fields in creeping solids”, Trans. ASME. J. Appl. Mech., 67:2 (2000), 372–382 | Zbl

[7] Jeon I., Im S., “The role of higher order eigenfields in elastic-plastic cracks”, J. Mech. Phys. Solids, 49 (2001), 2789–2818 | DOI | Zbl

[8] Hui C. Y., Ruina A., “Why K? High order singularities and small scale yielding”, Internat. Fracture, 72 (1995), 97–120

[9] Williams M. L., “On the stress distribution at the base of a stationary crack”, Trans ASME. J. Appl. Mech., 24 (1957), 109–114 | MR | Zbl

[10] Williams M. L., “Stress singularities resulting from various boundary conditions in angular corners of plates in tension”, J. Appl. Mech., 19 (1952), 526–528

[11] Meng L., Lee S. B., “Eigenspectra and orders of singularity at a crack tip for a power-law creeping medium”, Internat. J. Fracture, 92 (1998), 55–70 | DOI

[12] Chen D. H., Ushijima K., “Plastic stress singularity near the tip of a $V$-notch”, Internat. J. Fracture, 106 (2000), 117–134 | DOI

[13] Neuber H., “Theory of stress concentration for shear-strained prismatical bodies with arbitrary nonlinear stressstrain law”, J. Appl. Mech., 28 (1961), 544–550 | MR | Zbl

[14] Anheuser M., Gross D., “Higher order fields at crack and notch tips in power-law materials under longitudinal shear”, Arch. Appl. Mech., 64 (1994), 509–518 | DOI | Zbl

[15] Naife A. X., Vvedenie v metody vozmuschenii, Mir, M., 1984 | MR

[16] Stepanova L. V., “O sobstvennykh znacheniyakh v zadache o treschine antiploskogo sdviga v materiale so stepennymi opredelyayuschimi uravneniyami”, Prikl. mekhan. i tekhn. fiz., 2008, no. 1, 173–180

[17] Forsait Dzh., Malkolm M., Mouler K., Mashinnye metody matematicheskikh vychislenii, Mir, M., 1980 | MR

[18] Kalitkin H. H., Chislennye metody, Nauka, M., 1978 | MR

[19] Stepanova L. V., Matematicheskie metody mekhaniki razrusheniya, Samarskii un-t, Samara, 2006

[20] Beiker Dzh., Greivs-Morris P., Approksimatsiya Pade, Mir, M., 1986 | MR

[21] Andrianov I. V., Barantsev P. G., Manevich L. I., Asimptoticheskaya matematika i sinergetika, Editorial URSS, M., 2004