@article{ZVMMF_2009_49_8_a4,
author = {L. V. Stepanova},
title = {Eigenvalue analysis for a~rack in a~power-law material},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1399--1415},
year = {2009},
volume = {49},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a4/}
}
L. V. Stepanova. Eigenvalue analysis for a rack in a power-law material. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 8, pp. 1399-1415. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a4/
[1] Hutchinson J. W., “Singular behaviour at the end of tensile crack in a hardening material”, J. Mech. Phys. Solids, 16:1 (1968), 13–31 | DOI | Zbl
[2] Hutchinson J. W., “Plastic stress and strain fields at a crack tip”, J. Mech. Phys. Solids, 16:5 (1968), 337–349 | DOI | MR
[3] Rice J. R., Rosengren G. F., “Plane strain deformation near a crack tip in a power-law hardening material”, J. Mech. Phys. Solids, 16:1 (1968), 1–12 | DOI | Zbl
[4] Yuan F. G., Yang S., “Analytical solutions of fully plastic crack-tip higher order fields under antiplane shear”, Internat. J. Fracture, 69 (1994), 1–26 | DOI
[5] Nikishkov G. P., “An algorithm and a computer program for the three-term asymptotic expansion of elastic-plastic crack tip stress and displacement fields”, Engng Fract. Mech., 50:1 (1995), 65–83 | DOI
[6] Nguyen B. N., Onck P. R., Van Der Giessen E., “On higher-order crack-tip fields in creeping solids”, Trans. ASME. J. Appl. Mech., 67:2 (2000), 372–382 | Zbl
[7] Jeon I., Im S., “The role of higher order eigenfields in elastic-plastic cracks”, J. Mech. Phys. Solids, 49 (2001), 2789–2818 | DOI | Zbl
[8] Hui C. Y., Ruina A., “Why K? High order singularities and small scale yielding”, Internat. Fracture, 72 (1995), 97–120
[9] Williams M. L., “On the stress distribution at the base of a stationary crack”, Trans ASME. J. Appl. Mech., 24 (1957), 109–114 | MR | Zbl
[10] Williams M. L., “Stress singularities resulting from various boundary conditions in angular corners of plates in tension”, J. Appl. Mech., 19 (1952), 526–528
[11] Meng L., Lee S. B., “Eigenspectra and orders of singularity at a crack tip for a power-law creeping medium”, Internat. J. Fracture, 92 (1998), 55–70 | DOI
[12] Chen D. H., Ushijima K., “Plastic stress singularity near the tip of a $V$-notch”, Internat. J. Fracture, 106 (2000), 117–134 | DOI
[13] Neuber H., “Theory of stress concentration for shear-strained prismatical bodies with arbitrary nonlinear stressstrain law”, J. Appl. Mech., 28 (1961), 544–550 | MR | Zbl
[14] Anheuser M., Gross D., “Higher order fields at crack and notch tips in power-law materials under longitudinal shear”, Arch. Appl. Mech., 64 (1994), 509–518 | DOI | Zbl
[15] Naife A. X., Vvedenie v metody vozmuschenii, Mir, M., 1984 | MR
[16] Stepanova L. V., “O sobstvennykh znacheniyakh v zadache o treschine antiploskogo sdviga v materiale so stepennymi opredelyayuschimi uravneniyami”, Prikl. mekhan. i tekhn. fiz., 2008, no. 1, 173–180
[17] Forsait Dzh., Malkolm M., Mouler K., Mashinnye metody matematicheskikh vychislenii, Mir, M., 1980 | MR
[18] Kalitkin H. H., Chislennye metody, Nauka, M., 1978 | MR
[19] Stepanova L. V., Matematicheskie metody mekhaniki razrusheniya, Samarskii un-t, Samara, 2006
[20] Beiker Dzh., Greivs-Morris P., Approksimatsiya Pade, Mir, M., 1986 | MR
[21] Andrianov I. V., Barantsev P. G., Manevich L. I., Asimptoticheskaya matematika i sinergetika, Editorial URSS, M., 2004