On the numerical solution of the linear complementarity problem
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 8, pp. 1385-1398

Voir la notice de l'article provenant de la source Math-Net.Ru

The well-known linear complementarity problem with definite matrices is considered. It is proposed to solve it using a global optimization algorithm in which one of the basic stages is a special local search. The proposed global search algorithm is tested using a variety of randomly generated problems; a detailed analysis of the computational experiment is given.
@article{ZVMMF_2009_49_8_a3,
     author = {E. O. Mazurkevich and E. G. Petrova and A. S. Strekalovskii},
     title = {On the numerical solution of the linear complementarity problem},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1385--1398},
     publisher = {mathdoc},
     volume = {49},
     number = {8},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a3/}
}
TY  - JOUR
AU  - E. O. Mazurkevich
AU  - E. G. Petrova
AU  - A. S. Strekalovskii
TI  - On the numerical solution of the linear complementarity problem
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 1385
EP  - 1398
VL  - 49
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a3/
LA  - ru
ID  - ZVMMF_2009_49_8_a3
ER  - 
%0 Journal Article
%A E. O. Mazurkevich
%A E. G. Petrova
%A A. S. Strekalovskii
%T On the numerical solution of the linear complementarity problem
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 1385-1398
%V 49
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a3/
%G ru
%F ZVMMF_2009_49_8_a3
E. O. Mazurkevich; E. G. Petrova; A. S. Strekalovskii. On the numerical solution of the linear complementarity problem. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 8, pp. 1385-1398. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a3/