Exact soliton solutions for the general fifth Korteweg–de Vries equation
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 8, pp. 1497-1502
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              With the aid of computer symbolic computation system such as Maple, the extended hyperbolic function method and the Hirota's bilinear formalism combined with the simplified Hereman form are applied to determine the soliton solutions for the general fifth-order KdV equation. Several new soliton solutions can be obtained if we taking parameters properly in these solutions. The employed methods are straightforward and concise, and they can also be applied to other nonlinear evolution equations in mathematical physics.
            
            
            
          
        
      @article{ZVMMF_2009_49_8_a11,
     author = {W. Long},
     title = {Exact soliton solutions for the general fifth {Korteweg{\textendash}de} {Vries} equation},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1497--1502},
     publisher = {mathdoc},
     volume = {49},
     number = {8},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a11/}
}
                      
                      
                    TY - JOUR AU - W. Long TI - Exact soliton solutions for the general fifth Korteweg–de Vries equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 1497 EP - 1502 VL - 49 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a11/ LA - en ID - ZVMMF_2009_49_8_a11 ER -
W. Long. Exact soliton solutions for the general fifth Korteweg–de Vries equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 8, pp. 1497-1502. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a11/
