@article{ZVMMF_2009_49_8_a11,
author = {W. Long},
title = {Exact soliton solutions for the general fifth {Korteweg{\textendash}de} {Vries} equation},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1497--1502},
year = {2009},
volume = {49},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a11/}
}
TY - JOUR AU - W. Long TI - Exact soliton solutions for the general fifth Korteweg–de Vries equation JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 1497 EP - 1502 VL - 49 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a11/ LA - en ID - ZVMMF_2009_49_8_a11 ER -
W. Long. Exact soliton solutions for the general fifth Korteweg–de Vries equation. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 8, pp. 1497-1502. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a11/
[1] K. Sawada, T. Kotera, “A method for finding $N$-soliton solutions for the KdV equation and KdV-like equation”, Prog. Theor. Phys., 51 (1974), 1355–1367 | DOI | MR | Zbl
[2] A. M. Wazwaz, “Abundant solitons solutions for several forms of the fifth-order KdV equation by using the tanh method”, Appl. Math. Comput., 182 (2006), 283–300 | DOI | MR | Zbl
[3] A. M. Wazwaz, “The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations”, Appl. Math. Comput., 184 (2007), 1002–1014 | DOI | MR | Zbl
[4] A. M. Wazwaz, “Analytic study on the generalized fifth-order KdV equation: New solitons and periodic solutions”, Commun. Nonlinear Sci. Numer. Simul., 12 (2007), 1172–1180 | DOI | MR | Zbl
[5] S. Gómes, “The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations”, Appl. Math. Comput., 189 (2007), 1066–1077 | DOI | MR
[6] A. Salas, Exact solutions for the general fifth KdV equation by the exp function method, In press
[7] P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves”, Commun. Pure Appl. Math., 62 (1968), 467–490 | DOI | MR
[8] D. Kaup, “On the inverse scattering problem for the cubic eigenvalue problems of the class $\Psi_{xxx}+6Q\Psi_x+6R\Psi=\lambda\Psi$”, Stud. Appl. Math., 62 (1980), 189–216 | MR | Zbl
[9] B. A. Kupershmidt, “A super KdV equation: an integrable system”, Phys. Lett. A, 102 (1984), 213–215 | DOI | MR
[10] M. Ito, “A reduce program for finding symmetries of nonlinear evolution equations with uniform rank”, Comp. Phys. Comm., 42 (1986), 351–357 | DOI | MR
[11] R. Hirota, The Direct Method in Soliton Theory, Cambridge University Press, Cambridge, 2004 | MR | Zbl
[12] M. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1981 | MR | Zbl
[13] A. M. Wazwaz, “Multiple-soliton solutions for the fifth-order Caudrey–Dodd–Gibbon equation”, Appl. Math. Comput., 197 (2008), 719–724 | DOI | MR | Zbl
[14] A. M. Wazwaz, “The Hirota's direct method and the tanh-coth method for multiple-soliton solutions of the Sawada–Kotera–Ito seventh-order equation”, Appl. Math. Comput., 199 (2008), 133–138 | DOI | MR | Zbl
[15] A. M. Wazwaz, “TV-soliton solutions for the combined KdV-CDG equation and the KdV-Lax equation”, Appl. Math. Comput., 203 (2008), 402–407 | DOI | MR | Zbl
[16] A. M. Wazwaz, Single and multiple-soliton solutions for the (2+1)-dimensional KdV, In Press Appl. Math. Comput., 2008
[17] A. M. Wazwaz, “The extended tanh method for new solitons solutions for many forms of the fifth-order KdV equations”, Appl. Math. Comput., 184:2 (2007), 1002–1014 | DOI | MR | Zbl
[18] A. M. Wazwaz, “The tanh-conth method for solitons and kink solutions for nonlinear parabolic equations”, Appl. Math. Comput., 188 (2007), 1467–1475 | DOI | MR | Zbl
[19] A. M. Wazwaz, “New solitary-wave special solutions with compact support for the nonlinear dispersive $K(m,n)$ equations”, Chaos, Solitons and Fractals, 13:2 (2002), 321–330 | DOI | MR | Zbl