Inversion of a logarithmic operator defined on a regular set of arcs lying on a circle
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 8, pp. 1484-1496 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The theory of singular integral equations is used to derive simple inversion formulas for a logarithmic operator defined on a contour consisting of an arbitrary number of identical arcs lying on a circle at an equal angular spacing. The action of the inverse operator on trigonometric functions is calculated, and the moments of the inverse operator with trigonometric functions are found. Even simpler formulas are derived in the approximation of small arcs.
@article{ZVMMF_2009_49_8_a10,
     author = {A. S. Il'inskii and E. V. Chernokozhin},
     title = {Inversion of a~logarithmic operator defined on a~regular set of arcs lying on a~circle},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1484--1496},
     year = {2009},
     volume = {49},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a10/}
}
TY  - JOUR
AU  - A. S. Il'inskii
AU  - E. V. Chernokozhin
TI  - Inversion of a logarithmic operator defined on a regular set of arcs lying on a circle
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 1484
EP  - 1496
VL  - 49
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a10/
LA  - ru
ID  - ZVMMF_2009_49_8_a10
ER  - 
%0 Journal Article
%A A. S. Il'inskii
%A E. V. Chernokozhin
%T Inversion of a logarithmic operator defined on a regular set of arcs lying on a circle
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 1484-1496
%V 49
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a10/
%G ru
%F ZVMMF_2009_49_8_a10
A. S. Il'inskii; E. V. Chernokozhin. Inversion of a logarithmic operator defined on a regular set of arcs lying on a circle. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 8, pp. 1484-1496. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a10/

[1] Ilinskii A. C., Smirnov Yu. G., Difraktsiya elektromagnitnykh voln na provodyaschikh tonkikh ekranakh. Psevdodifferentsialnye operatory v zadachakh difraktsii, Izd-vo zhurnala “Radiotekhnika”, M., 1996

[2] Muskhelishvili H. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR

[3] Gakhov F. D., Kraevye zadachi, Nauka, M., 1963 | MR

[4] Van der Varden B. L., Algebra, Nauka, M., 1979 | MR

[5] Yanke E., Emde F., Lesh F., Spetsialnye funktsii, Nauka, M., 1977

[6] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Spetsialnye funktsii, Nauka, M, 1983 | MR | Zbl