@article{ZVMMF_2009_49_8_a1,
author = {V. A. Abilov and M. K. Kerimov},
title = {Sharp estimates for the convergence rate of double {Fourier} series in terms of orthogonal polynomials in the space $L_2((a,b)\times(c,d);p(x)q(y)))$},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1364--1368},
year = {2009},
volume = {49},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a1/}
}
TY - JOUR AU - V. A. Abilov AU - M. K. Kerimov TI - Sharp estimates for the convergence rate of double Fourier series in terms of orthogonal polynomials in the space $L_2((a,b)\times(c,d);p(x)q(y)))$ JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 1364 EP - 1368 VL - 49 IS - 8 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a1/ LA - ru ID - ZVMMF_2009_49_8_a1 ER -
%0 Journal Article %A V. A. Abilov %A M. K. Kerimov %T Sharp estimates for the convergence rate of double Fourier series in terms of orthogonal polynomials in the space $L_2((a,b)\times(c,d);p(x)q(y)))$ %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2009 %P 1364-1368 %V 49 %N 8 %U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a1/ %G ru %F ZVMMF_2009_49_8_a1
V. A. Abilov; M. K. Kerimov. Sharp estimates for the convergence rate of double Fourier series in terms of orthogonal polynomials in the space $L_2((a,b)\times(c,d);p(x)q(y)))$. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 8, pp. 1364-1368. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a1/
[1] Avilov V. A., Kerimov M. K., “Nekotorye voprosy razlozheniya funktsii v dvoinye ryady Fure–Ermita–Yakobi”, Zh. vychisl. matem. i matem. fiz., 44:9 (2004), 1596–1607 | MR
[2] Abilov V. A., Kerimov M. K., “Ob otsenkakh ostatochnykh chlenov kratnykh ryadov Fure–Chebysheva i kubaturnykh formul chebyshevskogo tipa”, Zh. vychisl. matem. i matem. fiz., 43:5 (2003), 643–663 | MR | Zbl
[3] Abilov V. A., “On the convergence of multiple Fourier series and quadrature formulae”, Math. Balkanica. New series, 16:1–4 (2002), 73–94 | MR | Zbl
[4] Abilov V. A., Dzhalaeva G. A., Kerimov M. K O, “O razlozhenii funktsii dvukh peremennykh v smeshannye ryady Fure–Yakobi i prilozheniya ikh k otsenke pogreshnosti kubaturnykh formul”, Zh. vychisl. matem. i matem. fiz., 47:8 (2007), 1298–1307 | MR
[5] Abilov V. A., Abilova F. V., Kerimov M. K., “Tochnye otsenki skorosti skhodimosti ryadov Fure na nekotorykh klassakh funktsii v prostranstve $L_2(a,b),p(x))$”, Zh. vychisl. matem. i matem. fiz., 49:6 (2009), 966–980 | MR | Zbl
[6] Suetin P. K., Ortogonalnye mnogochleny po dvum peremennym, Nauka, M., 1988, 384 pp. | MR | Zbl
[7] Lebedev H. H., Spetsialnye funktsii i ikh prilozheniya, Fizmatgiz, M., 1963 | MR
[8] Hille E., “On Laguerre series. I, II, III”, Proc. Acad. Sci. USA, 12 (1926), 261–265 ; 265–269 ; 348–352 | DOI | Zbl | Zbl | Zbl
[9] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, funktsii Besselya, funktsii parabolicheskogo tsilindra. Ortogonalnye mnogochleny, Nauka, M., 1966 | MR
[10] Kolmogorov A. H., Izbrannye trudy. Matematika i mekhanika, Nauka, M., 1987 | MR
[11] Korneichuk N. P., Tochnye konstanty v teorii priblizhenii, Nauka, M., 1987 | MR
[12] Rafalson S. Z., “Nailuchshee priblizhenie funktsii v metrikakh $L^2_{p(x)}$ algebraicheskimi mnogochlenami i koeffitsienty Fure po ortogonalnym mnogochlenam”, Vestn. LGU. Mekhan. i matem., 1969, no. 7, 68–779 | MR
[13] Abilov V. A., Abilova F. V., “O nailuchshem priblizhenii funktsii algebraicheskimi mnogochlenami v srednem”, Izv. vuzov. Matematika, 1997, no. 3, 61–63 | MR | Zbl