Sharp estimates for the convergence rate of double Fourier series in terms of orthogonal polynomials in the space $L_2((a,b)\times(c,d);p(x)q(y)))$
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 8, pp. 1364-1368 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sharp estimates are obtained for the convergence rate of double Fourier series in terms of general orthogonal polynomials in some classes of functions and for the Kolmogorov $N$-widths of these classes. These results find applications in numerical analysis.
@article{ZVMMF_2009_49_8_a1,
     author = {V. A. Abilov and M. K. Kerimov},
     title = {Sharp estimates for the convergence rate of double {Fourier} series in terms of orthogonal polynomials in the space $L_2((a,b)\times(c,d);p(x)q(y)))$},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1364--1368},
     year = {2009},
     volume = {49},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a1/}
}
TY  - JOUR
AU  - V. A. Abilov
AU  - M. K. Kerimov
TI  - Sharp estimates for the convergence rate of double Fourier series in terms of orthogonal polynomials in the space $L_2((a,b)\times(c,d);p(x)q(y)))$
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 1364
EP  - 1368
VL  - 49
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a1/
LA  - ru
ID  - ZVMMF_2009_49_8_a1
ER  - 
%0 Journal Article
%A V. A. Abilov
%A M. K. Kerimov
%T Sharp estimates for the convergence rate of double Fourier series in terms of orthogonal polynomials in the space $L_2((a,b)\times(c,d);p(x)q(y)))$
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 1364-1368
%V 49
%N 8
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a1/
%G ru
%F ZVMMF_2009_49_8_a1
V. A. Abilov; M. K. Kerimov. Sharp estimates for the convergence rate of double Fourier series in terms of orthogonal polynomials in the space $L_2((a,b)\times(c,d);p(x)q(y)))$. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 8, pp. 1364-1368. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_8_a1/

[1] Avilov V. A., Kerimov M. K., “Nekotorye voprosy razlozheniya funktsii v dvoinye ryady Fure–Ermita–Yakobi”, Zh. vychisl. matem. i matem. fiz., 44:9 (2004), 1596–1607 | MR

[2] Abilov V. A., Kerimov M. K., “Ob otsenkakh ostatochnykh chlenov kratnykh ryadov Fure–Chebysheva i kubaturnykh formul chebyshevskogo tipa”, Zh. vychisl. matem. i matem. fiz., 43:5 (2003), 643–663 | MR | Zbl

[3] Abilov V. A., “On the convergence of multiple Fourier series and quadrature formulae”, Math. Balkanica. New series, 16:1–4 (2002), 73–94 | MR | Zbl

[4] Abilov V. A., Dzhalaeva G. A., Kerimov M. K O, “O razlozhenii funktsii dvukh peremennykh v smeshannye ryady Fure–Yakobi i prilozheniya ikh k otsenke pogreshnosti kubaturnykh formul”, Zh. vychisl. matem. i matem. fiz., 47:8 (2007), 1298–1307 | MR

[5] Abilov V. A., Abilova F. V., Kerimov M. K., “Tochnye otsenki skorosti skhodimosti ryadov Fure na nekotorykh klassakh funktsii v prostranstve $L_2(a,b),p(x))$”, Zh. vychisl. matem. i matem. fiz., 49:6 (2009), 966–980 | MR | Zbl

[6] Suetin P. K., Ortogonalnye mnogochleny po dvum peremennym, Nauka, M., 1988, 384 pp. | MR | Zbl

[7] Lebedev H. H., Spetsialnye funktsii i ikh prilozheniya, Fizmatgiz, M., 1963 | MR

[8] Hille E., “On Laguerre series. I, II, III”, Proc. Acad. Sci. USA, 12 (1926), 261–265 ; 265–269 ; 348–352 | DOI | Zbl | Zbl | Zbl

[9] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, funktsii Besselya, funktsii parabolicheskogo tsilindra. Ortogonalnye mnogochleny, Nauka, M., 1966 | MR

[10] Kolmogorov A. H., Izbrannye trudy. Matematika i mekhanika, Nauka, M., 1987 | MR

[11] Korneichuk N. P., Tochnye konstanty v teorii priblizhenii, Nauka, M., 1987 | MR

[12] Rafalson S. Z., “Nailuchshee priblizhenie funktsii v metrikakh $L^2_{p(x)}$ algebraicheskimi mnogochlenami i koeffitsienty Fure po ortogonalnym mnogochlenam”, Vestn. LGU. Mekhan. i matem., 1969, no. 7, 68–779 | MR

[13] Abilov V. A., Abilova F. V., “O nailuchshem priblizhenii funktsii algebraicheskimi mnogochlenami v srednem”, Izv. vuzov. Matematika, 1997, no. 3, 61–63 | MR | Zbl