Propagation of perturbations in a two-layer rotating fluid with an interface excited by moving sources
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 7, pp. 1232-1254

Voir la notice de l'article provenant de la source Math-Net.Ru

Propagation of small perturbations in a two-layer inviscid fluid rotating at a constant angular velocity is studied. It is assumed that the lower density fluid occupies the upper unbounded half-space, while the higher density fluid occupies the lower unbounded half-space. The source of excitation is a plane wave traveling along the interface of the fluids. An explicit analytical solution to the problem is constructed, and its existence and uniqueness are proved. The long-time wave pattern developing in the fluids is analyzed.
@article{ZVMMF_2009_49_7_a9,
     author = {L. V. Perova},
     title = {Propagation of perturbations in a~two-layer rotating fluid with an interface excited by moving sources},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1232--1254},
     publisher = {mathdoc},
     volume = {49},
     number = {7},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_7_a9/}
}
TY  - JOUR
AU  - L. V. Perova
TI  - Propagation of perturbations in a two-layer rotating fluid with an interface excited by moving sources
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 1232
EP  - 1254
VL  - 49
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_7_a9/
LA  - ru
ID  - ZVMMF_2009_49_7_a9
ER  - 
%0 Journal Article
%A L. V. Perova
%T Propagation of perturbations in a two-layer rotating fluid with an interface excited by moving sources
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 1232-1254
%V 49
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_7_a9/
%G ru
%F ZVMMF_2009_49_7_a9
L. V. Perova. Propagation of perturbations in a two-layer rotating fluid with an interface excited by moving sources. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 7, pp. 1232-1254. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_7_a9/