Locally one-dimensional scheme for a loaded heat equation with Robin boundary conditions
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 7, pp. 1223-1231 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The third boundary value problem for a loaded heat equation in a $p$-dimensional parallelepiped is considered. An a priori estimate for the solution to a locally one-dimensional scheme is derived, and the convergence of the scheme is proved.
@article{ZVMMF_2009_49_7_a8,
     author = {M. H. Shhanukov-Lafishev},
     title = {Locally one-dimensional scheme for a~loaded heat equation with {Robin} boundary conditions},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1223--1231},
     year = {2009},
     volume = {49},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_7_a8/}
}
TY  - JOUR
AU  - M. H. Shhanukov-Lafishev
TI  - Locally one-dimensional scheme for a loaded heat equation with Robin boundary conditions
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 1223
EP  - 1231
VL  - 49
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_7_a8/
LA  - ru
ID  - ZVMMF_2009_49_7_a8
ER  - 
%0 Journal Article
%A M. H. Shhanukov-Lafishev
%T Locally one-dimensional scheme for a loaded heat equation with Robin boundary conditions
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 1223-1231
%V 49
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_7_a8/
%G ru
%F ZVMMF_2009_49_7_a8
M. H. Shhanukov-Lafishev. Locally one-dimensional scheme for a loaded heat equation with Robin boundary conditions. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 7, pp. 1223-1231. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_7_a8/

[1] Dikinov Kh. Zh., Kerefov A. A., Nakhushev A. M., “Ob odnoi kraevoi zadache dlya nagruzhennogo uravneniya teploprovodnosti”, Differents. ur-niya, 13:1 (1977), 77–79

[2] Borodin A. B., “Ob odnoi otsenke dlya ellipticheskikh uravnenii i ee prilozhenii k nagruzhennym uravneniyam”, Differents. ur-niya, 13:1 (1977), 17–22 | MR | Zbl

[3] Nakhushev A. M., “Kraevye zadachi dlya nagruzhennykh integro-differentsialnykh uravnenii giperbolicheskogo tipa i nekotorye ikh prilozheniya k prognozu pochvennoi vlagi”, Differents. ur-niya, 15:1 (1979), 96–105 | MR | Zbl

[4] Nakhushev A. M., “Nagruzhennye uravneniya”, Differents. ur-niya, 19:1 (1983), 86–94 | MR | Zbl

[5] Anokhin Yu. A., Gorstko A. B., Domeshek L. Yu. i dr., Matematicheskie modeli i metody upravleniya krupnomasshtabnym vodnym ob'ektom, Nauka, Novosibirsk, 1987

[6] Shkhanukov M. Kh., “Raznostnyi metod resheniya odnogo nagruzhennogo uravneniya parabolicheskogo tipa”, Differents. ur-niya, 13:1 (1977), 163–167 | MR | Zbl

[7] Abdullaev V. M., Aida-zade K. P., “O chislennom reshenii nagruzhennykh sistem obyknovennykh differentsialnykh uravnenii”, Zh. vychisl. matem. i matem. fiz., 44:9 (2004), 1585–1595 | MR

[8] Fryazinov I. V., “O raznostnoi approksimatsii granichnykh uslovii dlya tretei kraevoi zadachi”, Zh. vychisl. matem. i matem. fiz., 4:6 (1964), 1106–1112

[9] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977 | MR | Zbl

[10] Andreev V. B., “O skhodimosti raznostnykh skhem, approksimiruyuschikh vtoruyu i tretyu kraevye zadachi dlya ellipticheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 8:6 (1968), 1218–1231 | Zbl

[11] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973 | Zbl

[12] Voevodin A. F., Shugrin S. M., Chislennye metody rascheta odnomernykh sistem, SO AN SSSR, Novosibirsk, 1981 | MR | Zbl