Minimum of a functional in a metric space and fixed points
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 7, pp. 1167-1174
Cet article a éte moissonné depuis la source Math-Net.Ru
The existence of minimizers is examined for a function defined on a metric space. Theorems are proved that assert the existence of minimizers, and examples of the functions for which these theorems are valid are given. Then, these theorems are applied to proving theorems on fixed points of univalent and multivalued mappings of metric spaces. Finally, coincident points of two mappings are examined.
@article{ZVMMF_2009_49_7_a3,
author = {A. V. Arutyunov and B. D. Gel'man},
title = {Minimum of a~functional in a~metric space and fixed points},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1167--1174},
year = {2009},
volume = {49},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_7_a3/}
}
TY - JOUR AU - A. V. Arutyunov AU - B. D. Gel'man TI - Minimum of a functional in a metric space and fixed points JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 1167 EP - 1174 VL - 49 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_7_a3/ LA - ru ID - ZVMMF_2009_49_7_a3 ER -
A. V. Arutyunov; B. D. Gel'man. Minimum of a functional in a metric space and fixed points. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 7, pp. 1167-1174. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_7_a3/
[1] Arutyunov A. B., “Nakryvayuschie otobrazheniya metricheskikh prostranstv i nepodvizhnye tochki”, Dokl. RAN, 416:2 (2007), 151–155 | MR | Zbl
[2] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974 | MR | Zbl
[3] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR | Zbl
[4] Fomenko T. N., “O priblizhenii k tochkam sovpadeniya i obschim nepodvizhnym tochkam nabora otobrazhenii metricheskikh prostranstv”, Matem. zametki, 86:1 (2009), 110–125 | MR | Zbl
[5] Nadler S. B., “Multi-valued contraction mappings”, Pasif. J. Math., 30:2 (1969), 475–488 | MR | Zbl