On estimates for the Fourier-Bessel integral transform in the space $L_2(\mathbb R_+)$
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 7, pp. 1158-1166 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two estimates useful in applications are proved for the Fourier–Bessel integral transform in$L_2(\mathbb R_+)$ as applied to some classes of functions characterized by a generalized modulus of continuity.
@article{ZVMMF_2009_49_7_a2,
     author = {V. A. Abilov and F. V. Abilova and M. K. Kerimov},
     title = {On estimates for the {Fourier-Bessel} integral transform in the space $L_2(\mathbb R_+)$},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1158--1166},
     year = {2009},
     volume = {49},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_7_a2/}
}
TY  - JOUR
AU  - V. A. Abilov
AU  - F. V. Abilova
AU  - M. K. Kerimov
TI  - On estimates for the Fourier-Bessel integral transform in the space $L_2(\mathbb R_+)$
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 1158
EP  - 1166
VL  - 49
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_7_a2/
LA  - ru
ID  - ZVMMF_2009_49_7_a2
ER  - 
%0 Journal Article
%A V. A. Abilov
%A F. V. Abilova
%A M. K. Kerimov
%T On estimates for the Fourier-Bessel integral transform in the space $L_2(\mathbb R_+)$
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 1158-1166
%V 49
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_7_a2/
%G ru
%F ZVMMF_2009_49_7_a2
V. A. Abilov; F. V. Abilova; M. K. Kerimov. On estimates for the Fourier-Bessel integral transform in the space $L_2(\mathbb R_+)$. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 7, pp. 1158-1166. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_7_a2/

[1] Titchmarsh E., Vvedenie v teoriyu integrala Fure, Izd 2-e, Komkniga, M., 2005

[2] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Izd. 4-e, Gostekhteorizdat, M., 1972 | MR

[3] Vladimirov B. C., Uravneniya matematicheskoi fiziki, Nauka, M., 1976 | MR | Zbl

[4] Sveshnikov A. G., Bogolyubov A. N., Kravtsov V. V., Lektsii po matematicheskoi fizike, Nauka, M., 2004

[5] Vatson G. N., Teoriya besselevykh funktsii, Ch. I, II, Izd-vo inostr. lit., M., 1949

[6] Zayed A. I., Handbook of function and generalized function transformations, CRC Press, Boca Raton, New York, 1996 | MR | Zbl

[7] Everitt W. N., Kalf W., “The Bessel-differential equation and the Hankel transform”, J. Comput. and Appl. Math., 208:1 (2007), 3–19 | DOI | MR | Zbl

[8] Abilov B. A., Abilova F. V., Kerimov M. K., “Neskolko zamechanii o preobrazovanii Fure v prostranstve $L_2(\mathbb R)$”, Zh. vychisl. matem. i matem. fiz., 48:6 (2008), 939–945 | MR | Zbl

[9] Kipriyanov I. A., Singulyarnye ellipticheskie kraevye zadachi, Nauka, Fizmatlit, M., 1997 | MR

[10] Levitan B. M., “Razlozhenie po funktsiyam Besselya v ryady i integraly Fure”, Uspekhi matem. nauk, 6:2(42) (1951), 102–143 | MR | Zbl

[11] Abilov V. A., Abilova F. V., “Priblizhenie funktsii summami Fure–Besselya”, Izv. vuzov. Matematika, 2001, no. 8, 3–9 | MR | Zbl

[12] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR