On estimates for the Fourier-Bessel integral transform in the space $L_2(\mathbb R_+)$
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 7, pp. 1158-1166
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              Two estimates useful in applications are proved for the Fourier–Bessel integral transform in$L_2(\mathbb R_+)$ as applied to some classes of functions characterized by a generalized modulus of continuity.
            
            
            
          
        
      @article{ZVMMF_2009_49_7_a2,
     author = {V. A. Abilov and F. V. Abilova and M. K. Kerimov},
     title = {On estimates for the {Fourier-Bessel} integral transform in the space $L_2(\mathbb R_+)$},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1158--1166},
     publisher = {mathdoc},
     volume = {49},
     number = {7},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_7_a2/}
}
                      
                      
                    TY - JOUR AU - V. A. Abilov AU - F. V. Abilova AU - M. K. Kerimov TI - On estimates for the Fourier-Bessel integral transform in the space $L_2(\mathbb R_+)$ JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 1158 EP - 1166 VL - 49 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_7_a2/ LA - ru ID - ZVMMF_2009_49_7_a2 ER -
%0 Journal Article %A V. A. Abilov %A F. V. Abilova %A M. K. Kerimov %T On estimates for the Fourier-Bessel integral transform in the space $L_2(\mathbb R_+)$ %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2009 %P 1158-1166 %V 49 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_7_a2/ %G ru %F ZVMMF_2009_49_7_a2
V. A. Abilov; F. V. Abilova; M. K. Kerimov. On estimates for the Fourier-Bessel integral transform in the space $L_2(\mathbb R_+)$. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 7, pp. 1158-1166. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_7_a2/
