Correct algebras over estimation algorithms in the set of regular recognition problems with nonoverlapping classes
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 7, pp. 1327-1339
Cet article a éte moissonné depuis la source Math-Net.Ru
Algebras over estimation algorithms in the set of regular problems with nonoverlapping classes are considered. A correctness criterion for the arbitrary degree algebraic closure of the model of estimation algorithms in the classification problems of this type is proposed; this criterion can be efficiently verified. An estimate of the minimal degree of the algebraic closure that is sufficient for constructing a correct classifier in an arbitrary regular problem with nonoverlapping classes is found.
@article{ZVMMF_2009_49_7_a16,
author = {Yu. V. Maksimov},
title = {Correct algebras over estimation algorithms in the set of regular recognition problems with nonoverlapping classes},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1327--1339},
year = {2009},
volume = {49},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_7_a16/}
}
TY - JOUR AU - Yu. V. Maksimov TI - Correct algebras over estimation algorithms in the set of regular recognition problems with nonoverlapping classes JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 1327 EP - 1339 VL - 49 IS - 7 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_7_a16/ LA - ru ID - ZVMMF_2009_49_7_a16 ER -
%0 Journal Article %A Yu. V. Maksimov %T Correct algebras over estimation algorithms in the set of regular recognition problems with nonoverlapping classes %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2009 %P 1327-1339 %V 49 %N 7 %U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_7_a16/ %G ru %F ZVMMF_2009_49_7_a16
Yu. V. Maksimov. Correct algebras over estimation algorithms in the set of regular recognition problems with nonoverlapping classes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 7, pp. 1327-1339. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_7_a16/
[1] Dyakonov A. G., Algebry nad algoritmami vychisleniya otsenok, MGU, M., 2006
[2] Zhuravlev Yu. I., “Ob algebraicheskom podkhode k resheniyu zadach raspoznavaniya ili klassifikatsii”, Probl. kibernetiki, 33, M., 1978, 5–68 | Zbl
[3] Matrosov B. L., Korrektnye algebry ogranichennoi emkosti nad mnozhestvom regulyarnykh zadach, Dis. $\dots$ dokt. fiz.-matem. nauk, VTs AN SSSR, M., 1986
[4] Rudakov K. V., Algebraicheskaya teoriya universalnykh i lokalnykh ogranichenii dlya algoritmov raspoznavaniya, Dis. $\dots$ dokt. fiz.-matem. nauk, VTs RAN, M., 1992
[5] Dyakonov A. G., “Algebra nad algoritmami vychisleniya otsenok: normirovka i delenie”, Zh. vychisl. matem. i matem. fiz., 47:6 (2007), 1099–1109