Numerical method for computing two-dimensional unsteady rarefied gas flows in arbitrarily shaped domains
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 7, pp. 1255-1270 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A high-order accurate method for analyzing two-dimensional rarefied gas flows is proposed on the basis of a nonstationary kinetic equation in arbitrarily shaped regions. The basic idea behind the method is the use of hybrid unstructured meshes in physical space. Special attention is given to the performance of the method in a wide range of Knudsen numbers and to accurate approximations of boundary conditions. Examples calculations are provided.
@article{ZVMMF_2009_49_7_a10,
     author = {V. A. Titarev},
     title = {Numerical method for computing two-dimensional unsteady rarefied gas flows in arbitrarily shaped domains},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1255--1270},
     year = {2009},
     volume = {49},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_7_a10/}
}
TY  - JOUR
AU  - V. A. Titarev
TI  - Numerical method for computing two-dimensional unsteady rarefied gas flows in arbitrarily shaped domains
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 1255
EP  - 1270
VL  - 49
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_7_a10/
LA  - ru
ID  - ZVMMF_2009_49_7_a10
ER  - 
%0 Journal Article
%A V. A. Titarev
%T Numerical method for computing two-dimensional unsteady rarefied gas flows in arbitrarily shaped domains
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 1255-1270
%V 49
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_7_a10/
%G ru
%F ZVMMF_2009_49_7_a10
V. A. Titarev. Numerical method for computing two-dimensional unsteady rarefied gas flows in arbitrarily shaped domains. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 7, pp. 1255-1270. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_7_a10/

[1] Frolova A. A., Cheremisin F. G., “Obtekanie tsilindricheskikh tel potokom razrezhennogo gaza”, Zh. vychisl. matem. i matem. fiz., 38:12 (1998), 2096–2102 | MR | Zbl

[2] Li Z.-H., Zhang H.-X., “Study on gas kinetic unified algorithm for flows from rarefied transition to continuum”, J. Comput. Phys., 193:2 (2004), 708–738 | DOI | Zbl

[3] Larina I. H., Rykov V. A., “Issledovanie obtekaniya krugovogo tsilindra potokom razrezhennogo gaza v statsionarnom i avtokolebatelnom rezhime”, Izv. RAN. Mekhan. zhidkosti i gaza, 2006, no. 1, 166–175

[4] Kolobov V. I., Arslanbekov R. R., Aristov V. V. et al., “Unified solver for rarefied and continuum flows with adaptive mesh and algorithm refinement”, J. Comput. Phys., 223 (2007), 589–608 | DOI | Zbl

[5] Shakhov E. M., “Ob obobschenii relaksatsionnogo kineticheskogo uravneniya Kruka”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1968, no. 5, 142–145

[6] Shakhov E. M., Metod issledovaniya dvizhenii razrezhennogo gaza, Nauka, M., 1974

[7] Chu C. K., “Kinetic-theoretic description of the formation of a shock wave”, Phys. Fluids, 8:1 (1965), 12–22 | DOI

[8] Godunov C. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47(89):3 (1959), 271–306 | MR | Zbl

[9] Tillyaeva N. I., “Obobschenie modifitsirovannoi skhemy S. K. Godunova na proizvolnye neregulyarnye setki”, Uch. zap. TsAGI, 17:2 (1986), 18–26

[10] Kolgan V. P., “Primenenie printsipa minimalnykh znachenii proizvodnoi k postroeniyu konechno-raznostnykh skhem dlya rascheta razryvnykh techenii gazovoi dinamiki”, Uch. zap. TsAGI, 3:6 (1972), 68–77

[11] Kolgan V. P., “Chislennyi metod resheniya prostranstvennykh zadach gazovoi dinamiki i raschet obtekaniya tela pri nalichii ugla ataki”, Uch. zap. TsAGI, 6:2 (1975), 1–6

[12] van der Vegt J. J. W., van der Ven H., “Discontinuous Galerkin finite element method with anisotropic local grid refinement for inviscid compressible flows”, J. Comput. Phys., 141:1 (1998), 46–77 | DOI | MR | Zbl

[13] Dumbser M., Käser M., “Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems”, J. Comput. Phys., 221:2 (2007), 693–723 | DOI | MR | Zbl

[14] Barth T. J., Frederickson P. O., Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction, AIAA Paper No 90-0013, 28th Aerospace Sciences Meeting, 1990

[15] Ollivier-Gooch C. F., van Altena M., “A high-order-accurate unstructured mesh finite-volume scheme for the advection-diffusion equation”, J. Comput. Phys., 181 (2002), 729–752 | DOI | Zbl

[16] Kulikovskii A. G., Pogorelov H. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001

[17] Titarev V. A., Shakhov E. M., “Chislennyi raschet poperechnogo obtekaniya kholodnoi plastiny giperzvukovym potokom razrezhennogo gaza”, Izv. RAN. Mekhan. zhidkosti i gaza, 2005, no. 5, 139–154

[18] Titarev V. A., “Conservative numerical methods for model kinetic equations”, Comput. and Fluids, 36:9 (2007), 1446–1459 | DOI | MR

[19] Titarev B. A., Shakhov E. M., “Chislennoe issledovanie silnogo nestatsionarnogo ispareniya s poverkhnosti sfery”, Zh. vychisl. matem. i matem. fiz., 44:7 (2004), 1314–1328 | MR | Zbl

[20] Toro E. F., Riemann solvers and numerical methods for fluid dynamics, Sec. Ed., Springer, Berlin, 1999 | MR