Constrained optimization of the randomized iterative method
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 7, pp. 1148-1157 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Selection of conditionally optimal parameters of the randomized iterative method for solving large-scale linear systems of equations is considered. The error of this method is analyzed by analogy with the functional Monte Carlo algorithms. For the simple iteration method, the “column” randomization of the matrix is thoroughly analyzed.
@article{ZVMMF_2009_49_7_a1,
     author = {T. E. Bulgakova and A. V. Voitishek},
     title = {Constrained optimization of the randomized iterative method},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1148--1157},
     year = {2009},
     volume = {49},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_7_a1/}
}
TY  - JOUR
AU  - T. E. Bulgakova
AU  - A. V. Voitishek
TI  - Constrained optimization of the randomized iterative method
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 1148
EP  - 1157
VL  - 49
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_7_a1/
LA  - ru
ID  - ZVMMF_2009_49_7_a1
ER  - 
%0 Journal Article
%A T. E. Bulgakova
%A A. V. Voitishek
%T Constrained optimization of the randomized iterative method
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 1148-1157
%V 49
%N 7
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_7_a1/
%G ru
%F ZVMMF_2009_49_7_a1
T. E. Bulgakova; A. V. Voitishek. Constrained optimization of the randomized iterative method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 7, pp. 1148-1157. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_7_a1/

[1] Bakhvalov N. S., Chislennye metody, Nauka, M., 1975

[2] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1980 | MR

[3] Konovalov A. N., Vvedenie v vychislitelnye metody lineinoi algebry, Nauka, Novosibirsk, 1993 | MR | Zbl

[4] Sobol I. M., Chislennye metody Monte-Karlo, Nauka, M., 1973 | MR

[5] Mikhailov G. A., Voitishek A. B., Chislennoe statisticheskoe modelirovanie. Metody Monte-Karlo, Izd. tsentr “Akademiya”, M., 2006

[6] Mikhailov G. A., Vesovye metody Monte-Karlo, IVMiMG SO RAN, Novosibirsk, 2000 | MR

[7] Bulavski Yu. V., “Randomized method of successive approximations for linear systems of algebraic equations”, Rus. J. Numer. Analys. Math. Modelling, 10:6 (1995), 481–493 | DOI | MR | Zbl

[8] Bulavsky Yu. V., Temnikov S. A., “Randomized method of successive approximations”, Math. Meth. Stochastic Simulat, and Experimental Design, Univ. Publ. House, St. Petersburg, 1996, 64–68

[9] Temnikov C. A., “Reshenie zadachi svetorasseyaniya ansamblem fraktalnykh klasterov metodom Monte-Karlo”, Tr. Konf. molodykh uchenykh, VTs SO RAN, Novosibirsk, 1995, 160–172

[10] Voitishek A. B., Funktsionalnye otsenki metoda Monte-Karlo, HGU, Novosibirsk, 2007

[11] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl

[12] Borovkov A. A., Teoriya veroyatnostei, Nauka, M., 1986 | MR | Zbl

[13] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984 | MR | Zbl

[14] Rouzankin P. S., Voytishek A. V., “On the cost of algorithms for randomselection”, Monte Carlo Meth. Appl., 5:1 (1999), 39–54 | DOI | MR | Zbl

[15] Motsartova H. S., Bulgakova T. E., “Primenenie algoritma randomizatsii “bolshikh” matrits dlya resheniya zadachi Dirikhle”, Materialy XLVI Mezhdunar. studencheskoi konf. “Student i nauchno-tekhn. progress”. Matematika, HGU, Novosibirsk, 2008, 238–239