@article{ZVMMF_2009_49_6_a8,
author = {I. L. Vasiliev and K. B. Klimentova and Yu. A. Kochetov},
title = {New lower bounds for the facility location problem with clients' preferences},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {1055--1066},
year = {2009},
volume = {49},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a8/}
}
TY - JOUR AU - I. L. Vasiliev AU - K. B. Klimentova AU - Yu. A. Kochetov TI - New lower bounds for the facility location problem with clients' preferences JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 1055 EP - 1066 VL - 49 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a8/ LA - ru ID - ZVMMF_2009_49_6_a8 ER -
%0 Journal Article %A I. L. Vasiliev %A K. B. Klimentova %A Yu. A. Kochetov %T New lower bounds for the facility location problem with clients' preferences %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2009 %P 1055-1066 %V 49 %N 6 %U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a8/ %G ru %F ZVMMF_2009_49_6_a8
I. L. Vasiliev; K. B. Klimentova; Yu. A. Kochetov. New lower bounds for the facility location problem with clients' preferences. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 6, pp. 1055-1066. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a8/
[1] Beresnev V. L., Diskretnye zadachi razmescheniya i polinomy ot bulevykh peremennykh, In-t matematiki SO RAN, Novosibirsk, 2005
[2] Gorbachevskaya L. E., Polinomialno razreshimye i NP-trudnye zadachi standartizatsii, Dis. $\dots$ kand. fiz.-matem. nauk, IM SO RAN, Novosibirsk, 1998
[3] Hanjoul P., Peeters D., “A facility location problem with clients' preference orderings”, Regional Sci. Urban Econom., 17 (1987), 451–473 | DOI
[4] Gorbachevskaya L. E., Dementev V. L., Shamardin Yu. V., “Dvukhurovnevaya zadacha standartizatsii s usloviem edinstvennosti optimalnogo potrebitelskogo vybora”, Diskretnyi analiz i issl. operatsii. Ser. 2, 6:2 (1999), 3–11 | MR | Zbl
[5] Ausiello G., Crescenzi P., Gambosi G. et al., Complexity and approximation: Combinatorial optimization problems and their approximability properties, Springer, Berlin, 1999 | MR | Zbl
[6] Hansen P., Kochetov Y., Mladenovic N., Lower bounds for the uncapacitated facility location problem with user preferences, Techn. Rept, Les Charies du GERAD G-2004-24, 2004
[7] Hansen P., Kochetov Y., Mladenovic N., The uncapacitated facility location problem with user preferences, Proc. DOM'2004 Workshop. Omsk–Irkutsk, 2004, 50–55
[8] Alekseeva E. B., Kochetov Yu. A., “Geneticheskii lokalnyi poisk dlya zadachi o $p$-mediane s predpochteniyami klientov”, Diskretnyi analiz i issl. operatsii. Ser. 2, 14:1 (2007), 3–31 | MR
[9] Cánovas L., García S., Labbé M., Marín A., “A strengthened formulation for the simple plant location problem with order”, Operat. Res. Letts., 35:2 (2007), 141–150 | DOI | MR | Zbl
[10] Kononov A. B., Kochetov Yu. A., Plyasunov A. B., “Konkurentnye modeli razmescheniya proizvodstva”, Zh. vychisl. matem. i matem. fiz., 49:6 (2009), 1037–1054 | Zbl
[11] Nemhauser G. N., Wolsey L. A., Integer and combinational optimization, Wiley-Intersci. Publs, Chichester, 1999 | MR | Zbl
[12] Padberg M. W., “On the facial structure of the set packing polyhedra”, Math. Program., 5 (1973), 199–215 | DOI | MR | Zbl
[13] Pochet Y., Wolsey L. A., Production planning by mixed integer programming, Springer, Berlin, 2006 | MR | Zbl
[14] Avella P., Vasil'ev I., “A computational study of a cutting plane algorithm for university course timetabling author”, J. Scheduling, 8:6 (2005), 497–514 | DOI | MR | Zbl
[15] Hoffman K. L., Padberg M., “Solving airline crew scheduling problems by branch-and-cut”, Management Sci., 39:6 (1993), 657–682 | DOI | Zbl
[16] Borndorfer R., Weismantel R., “Set packing relaxations of some integer programs”, Math. Program., 88 (2000), 425–450 | DOI | MR
[17] Waterer H., Johnson E. L., Nobili P., Savelsbergh M. W. P., “The relation of time indexed formulations of single machine scheduling problems to the node packing problem”, Math. Program., 93 (2002), 477–494 | DOI | MR | Zbl
[18] Cheng E., Cunninghav W. Y., “Wheel inequalities for stable set polytopes”, Math. Program., 77:3 (1997), 389–421 | MR | Zbl
[19] Cheng E., Vries S., “Antiweb-wheel inequalities and their separation problems over the stable set polytopes”, Math. Program., 92:1 (2002), 153–175 | DOI | MR | Zbl
[20] Rossi F., Smriglio S., “A branch-and-cut algorithm for the maximum cardinality stable set problem”, Operat. Res. Letts., 28 (2001), 63–74 | DOI | MR | Zbl
[21] Khachaturov V. P., Veselovskii B. E., Zlotov A. B. i dr., Kombinatornye metody i algoritmy resheniya zadach diskretnoi optimizatsii bolshoi razmernosti, Nauka, M., 2000 | MR | Zbl