New lower bounds for the facility location problem with clients' preferences
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 6, pp. 1055-1066 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A bilevel facility location problem in which the clients choose suppliers based on their own preferences is studied. It is shown that the coopertative and anticooperative statements can be reduced to a particular case in which every client has a linear preference order on the set of facilities to be opened. For this case, various reductions of the bilevel problem to integer linear programs are considered. A new statement of the problem is proposed that is based on a family of valid inequalities that are related to the problem on a pair of matrices and the set packing problem. It is shown that this formulation is stronger than the other known formulations from the viewpoint of the linear relaxation and the integrality gap.
@article{ZVMMF_2009_49_6_a8,
     author = {I. L. Vasiliev and K. B. Klimentova and Yu. A. Kochetov},
     title = {New lower bounds for the facility location problem with clients' preferences},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1055--1066},
     year = {2009},
     volume = {49},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a8/}
}
TY  - JOUR
AU  - I. L. Vasiliev
AU  - K. B. Klimentova
AU  - Yu. A. Kochetov
TI  - New lower bounds for the facility location problem with clients' preferences
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 1055
EP  - 1066
VL  - 49
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a8/
LA  - ru
ID  - ZVMMF_2009_49_6_a8
ER  - 
%0 Journal Article
%A I. L. Vasiliev
%A K. B. Klimentova
%A Yu. A. Kochetov
%T New lower bounds for the facility location problem with clients' preferences
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 1055-1066
%V 49
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a8/
%G ru
%F ZVMMF_2009_49_6_a8
I. L. Vasiliev; K. B. Klimentova; Yu. A. Kochetov. New lower bounds for the facility location problem with clients' preferences. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 6, pp. 1055-1066. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a8/

[1] Beresnev V. L., Diskretnye zadachi razmescheniya i polinomy ot bulevykh peremennykh, In-t matematiki SO RAN, Novosibirsk, 2005

[2] Gorbachevskaya L. E., Polinomialno razreshimye i NP-trudnye zadachi standartizatsii, Dis. $\dots$ kand. fiz.-matem. nauk, IM SO RAN, Novosibirsk, 1998

[3] Hanjoul P., Peeters D., “A facility location problem with clients' preference orderings”, Regional Sci. Urban Econom., 17 (1987), 451–473 | DOI

[4] Gorbachevskaya L. E., Dementev V. L., Shamardin Yu. V., “Dvukhurovnevaya zadacha standartizatsii s usloviem edinstvennosti optimalnogo potrebitelskogo vybora”, Diskretnyi analiz i issl. operatsii. Ser. 2, 6:2 (1999), 3–11 | MR | Zbl

[5] Ausiello G., Crescenzi P., Gambosi G. et al., Complexity and approximation: Combinatorial optimization problems and their approximability properties, Springer, Berlin, 1999 | MR | Zbl

[6] Hansen P., Kochetov Y., Mladenovic N., Lower bounds for the uncapacitated facility location problem with user preferences, Techn. Rept, Les Charies du GERAD G-2004-24, 2004

[7] Hansen P., Kochetov Y., Mladenovic N., The uncapacitated facility location problem with user preferences, Proc. DOM'2004 Workshop. Omsk–Irkutsk, 2004, 50–55

[8] Alekseeva E. B., Kochetov Yu. A., “Geneticheskii lokalnyi poisk dlya zadachi o $p$-mediane s predpochteniyami klientov”, Diskretnyi analiz i issl. operatsii. Ser. 2, 14:1 (2007), 3–31 | MR

[9] Cánovas L., García S., Labbé M., Marín A., “A strengthened formulation for the simple plant location problem with order”, Operat. Res. Letts., 35:2 (2007), 141–150 | DOI | MR | Zbl

[10] Kononov A. B., Kochetov Yu. A., Plyasunov A. B., “Konkurentnye modeli razmescheniya proizvodstva”, Zh. vychisl. matem. i matem. fiz., 49:6 (2009), 1037–1054 | Zbl

[11] Nemhauser G. N., Wolsey L. A., Integer and combinational optimization, Wiley-Intersci. Publs, Chichester, 1999 | MR | Zbl

[12] Padberg M. W., “On the facial structure of the set packing polyhedra”, Math. Program., 5 (1973), 199–215 | DOI | MR | Zbl

[13] Pochet Y., Wolsey L. A., Production planning by mixed integer programming, Springer, Berlin, 2006 | MR | Zbl

[14] Avella P., Vasil'ev I., “A computational study of a cutting plane algorithm for university course timetabling author”, J. Scheduling, 8:6 (2005), 497–514 | DOI | MR | Zbl

[15] Hoffman K. L., Padberg M., “Solving airline crew scheduling problems by branch-and-cut”, Management Sci., 39:6 (1993), 657–682 | DOI | Zbl

[16] Borndorfer R., Weismantel R., “Set packing relaxations of some integer programs”, Math. Program., 88 (2000), 425–450 | DOI | MR

[17] Waterer H., Johnson E. L., Nobili P., Savelsbergh M. W. P., “The relation of time indexed formulations of single machine scheduling problems to the node packing problem”, Math. Program., 93 (2002), 477–494 | DOI | MR | Zbl

[18] Cheng E., Cunninghav W. Y., “Wheel inequalities for stable set polytopes”, Math. Program., 77:3 (1997), 389–421 | MR | Zbl

[19] Cheng E., Vries S., “Antiweb-wheel inequalities and their separation problems over the stable set polytopes”, Math. Program., 92:1 (2002), 153–175 | DOI | MR | Zbl

[20] Rossi F., Smriglio S., “A branch-and-cut algorithm for the maximum cardinality stable set problem”, Operat. Res. Letts., 28 (2001), 63–74 | DOI | MR | Zbl

[21] Khachaturov V. P., Veselovskii B. E., Zlotov A. B. i dr., Kombinatornye metody i algoritmy resheniya zadach diskretnoi optimizatsii bolshoi razmernosti, Nauka, M., 2000 | MR | Zbl