The first variation and Pontryagin's maximum principle in optimal control for partial differential equations
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 6, pp. 998-1020
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              A modification of the classical needle variation, namely, the so-called two-parameter variation of controls is proposed. The first variation of a functional is understood as a repeated limit. It is shown that the modified needle variation can be effectively used to derive necessary optimality conditions for a rather wide class of optimal control problems involving partial differential equations with weak solutions. Specifically, the two-parameter variation is used to obtain necessary optimality conditions in the form of a maximum principle for the optimal control of divergent hyperbolic equations.
            
            
            
          
        
      @article{ZVMMF_2009_49_6_a5,
     author = {M. I. Sumin},
     title = {The first variation and {Pontryagin's} maximum principle in optimal control for partial differential equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {998--1020},
     publisher = {mathdoc},
     volume = {49},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a5/}
}
                      
                      
                    TY - JOUR AU - M. I. Sumin TI - The first variation and Pontryagin's maximum principle in optimal control for partial differential equations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 998 EP - 1020 VL - 49 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a5/ LA - ru ID - ZVMMF_2009_49_6_a5 ER -
%0 Journal Article %A M. I. Sumin %T The first variation and Pontryagin's maximum principle in optimal control for partial differential equations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2009 %P 998-1020 %V 49 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a5/ %G ru %F ZVMMF_2009_49_6_a5
M. I. Sumin. The first variation and Pontryagin's maximum principle in optimal control for partial differential equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 6, pp. 998-1020. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a5/
