The first variation and Pontryagin's maximum principle in optimal control for partial differential equations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 6, pp. 998-1020 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A modification of the classical needle variation, namely, the so-called two-parameter variation of controls is proposed. The first variation of a functional is understood as a repeated limit. It is shown that the modified needle variation can be effectively used to derive necessary optimality conditions for a rather wide class of optimal control problems involving partial differential equations with weak solutions. Specifically, the two-parameter variation is used to obtain necessary optimality conditions in the form of a maximum principle for the optimal control of divergent hyperbolic equations.
@article{ZVMMF_2009_49_6_a5,
     author = {M. I. Sumin},
     title = {The first variation and {Pontryagin's} maximum principle in optimal control for partial differential equations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {998--1020},
     year = {2009},
     volume = {49},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a5/}
}
TY  - JOUR
AU  - M. I. Sumin
TI  - The first variation and Pontryagin's maximum principle in optimal control for partial differential equations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 998
EP  - 1020
VL  - 49
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a5/
LA  - ru
ID  - ZVMMF_2009_49_6_a5
ER  - 
%0 Journal Article
%A M. I. Sumin
%T The first variation and Pontryagin's maximum principle in optimal control for partial differential equations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 998-1020
%V 49
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a5/
%G ru
%F ZVMMF_2009_49_6_a5
M. I. Sumin. The first variation and Pontryagin's maximum principle in optimal control for partial differential equations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 6, pp. 998-1020. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a5/

[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961

[2] Li X. J., “Vector-valued measure and necessary conditions for the optimal control problems of linear systems”, J. Math. Res. Exposition, 1 (1981), 51–56 | MR | Zbl

[3] Yao Y., “Vector measure and maximum principle of distributed parameter systems”, Sci. Sinica Ser., 26 (1983), 102–112 | MR | Zbl

[4] Li X., Yao J., “Maximum principle of distributed parameter systems with time lags”, Distributed Parameter Systems, Lect. Notes in Control and Inform. Sci., 75, Springer, New-York, 1985, 410–427 | MR

[5] Li X., Yong J., “Necessary conditions of optimal control for distributed parameter systems”, SIAM J. Control Optimizat., 29 (1991), 895–908 | DOI | MR | Zbl

[6] Li X., Yong J., Optimal control theory for infinite dimensional systems, Birkhäuser, Basel, 1995 | MR | Zbl

[7] Alekseev V. M., Tikhomirov V. M., Fomin C. B., Optimalnoe upravlenie, Nauka, M., 1979 | MR

[8] Matveev A. C., Yakubovich V. A., Optimalnye sistemy upravleniya: Obyknovennye differentsialnye uravneniya. Spetsialnye zadachi, Uch. posobie, Izd-vo SPbU, SPb., 2003

[9] Arutyunov A. B., Magaril-Ilyaev G. G., Tikhomirov V. M., Printsip masimuma Pontryagina. Dokazatelstvo i prilozheniya, Faktorial Press, M., 2006

[10] Plotnikov V. I., “Neobkhodimye i dostatochnye usloviya optimalnosti i usloviya edinstvennosti optimiziruyuschikh funktsii dlya upravlyaemykh sistem obschego vida”, Izv. AN SSSR. Ser. matem., 36:3 (1972), 652–679 | MR | Zbl

[11] Plotnikov V. I., Sumin V. I., “O pervoi variatsii i sopryazhennoi zadache v teorii optimalnogo upravleniya”, Funkts. analiz i ego prilozh., 10:4 (1976), 95–96 | MR | Zbl

[12] Sumin M. I., “Optimalnoe upravlenie ob'ektami, opisyvaemymi kvazilineinymi ellipticheskimi uravneniyami”, Differents. ur-niya, 25:8 (1989), 1406–1416 | MR

[13] Sumin M. I., “Printsip maksimuma v teorii suboptimalnogo upravleniya raspredelennymi sistemami s operatornymi ogranicheniyami v gilbertovom prostranstve”, Itogi nauki i tekhn. VINITI. Sovrem. matem. i ee prilozh. Tematich. obzory, 66, 1999, 193–235 | MR | Zbl

[14] Sumin V. I., “Volterrovy funktsionalnye uravneniya i printsip maksimuma dlya raspredelennykh zadach. I”, Vestn. Nizhegorodskogo un-ta, 2004, no. 1(2), 178–191

[15] Raymond J. P., Zidani H., “Hamiltonian Pontryagin's principles for control problems governed by semilinear parabolic equations”, Appl. Math. Optimizat., 39 (1999), 143–177 | DOI | MR | Zbl

[16] Raymond J.-P., Zidani H., “Pontryagin's principle for state-constrained control problems governed by parabolic equations with unbounded controls”, SIAM J. Control Optimizat., 36:6 (1998), 1853–1879 | DOI | MR | Zbl

[17] Lions Zh.-L., Upravlenie singulyarnymi raspredelennymi sistemami, Nauka, M., 1987 | MR

[18] Gavrilov B. C., Sumin M. I., Elementy teorii optimalnogo upravleniya dlya uravnenii s chastnymi proizvodnymi. Ch. 1. Printsip maksimuma L. S. Pontryagina v zadache s funktsionalnymi ogranicheniyami dlya volnovogo uravneniya, Uch.-metod. posobie, NNGU, N. Novgorod, 2007, 80 pp.

[19] Smirnov V. I., Kurs vysshei matematiki, Tom V, Fizmatgiz, M., 1959 | MR

[20] Sumin M. I., Zadachi optimalnogo upravleniya sosredotochennymi i raspredelennymi sistemami s differentsiruemymi i nedifferentsiruemymi funktsionalami i funktsiyami, zadayuschimi sistemy, Dis. $\dots$ kand. fiz.-matem. nauk, Gorkovskii gos. un-t, Gorkii, 1983

[21] Sumin M. I., “O neobkhodimykh usloviyakh optimalnosti v zadachakh optimalnogo upravleniya sistemami s raspredelennymi parametrami”, Metody prikladnogo funktsionalnogo analiza, Mezhvuzovskii sb., NNGU, N. Novgorod, 1991, 88–94 | MR

[22] Sumin M. I., “O pervoi variatsii v teorii optimalnogo upravleniya sistemami s raspredelennymi parametrami”, Differents. ur-niya, 27:12 (1991), 2179–2181 | Zbl

[23] Sumin M. I., Matematicheskaya teoriya suboptimalnogo upravleniya raspredelennymi sistemami, Dis. $\dots$ dokt. fiz.-matem. nauk, Nizhegorodskii gos. un-t, N. Novgorod, 2000

[24] Stein M. I., Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR

[25] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva H. H., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[26] Novozhenov M. M., Sumin V. I., Sumin M. I., Metody optimalnogo upravleniya sistemami matematicheskoi fiziki, Izd-vo Gorkovskogo un-ta, Gorkii, 1986

[27] Sumin M. I., “Regulyarizovannyi gradientnyi dvoistvennyi metod resheniya obratnoi zadachi finalnogo nablyudeniya dlya parabolicheskogo uravneniya”, Zh. vychisl. matem. i matem. fiz., 44:11 (2004), 2001–2019 | MR | Zbl

[28] Sumin M. I., “Suboptimalnoe upravlenie sistemami s raspredelennymi parametrami: minimiziruyuschie posledovatelnosti, funktsiya znachenii”, Zh. vychisl. matem. i matem. fiz., 37:1 (1997), 23–41 | MR | Zbl

[29] Sumin M. I., “Suboptimalnoe upravlenie sistemami s raspredelennymi parametrami: svoistva normalnosti, subgradientnyi dvoistvennyi metod”, Zh. vychisl. matem. i matem. fiz., 37:2 (1997), 162–178 | MR | Zbl

[30] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[31] Ekeland I., “On the variational principle”, J. Math. Analys. and Appl., 47:2 (1974), 324–353 | DOI | MR | Zbl

[32] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988 | MR | Zbl