@article{ZVMMF_2009_49_6_a4,
author = {V. A. Dykhta and O. N. Samsonyuk},
title = {A~maximum principle for smooth optimal impulsive control problems with multipoint state constraints},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {981--997},
year = {2009},
volume = {49},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a4/}
}
TY - JOUR AU - V. A. Dykhta AU - O. N. Samsonyuk TI - A maximum principle for smooth optimal impulsive control problems with multipoint state constraints JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 981 EP - 997 VL - 49 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a4/ LA - ru ID - ZVMMF_2009_49_6_a4 ER -
%0 Journal Article %A V. A. Dykhta %A O. N. Samsonyuk %T A maximum principle for smooth optimal impulsive control problems with multipoint state constraints %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2009 %P 981-997 %V 49 %N 6 %U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a4/ %G ru %F ZVMMF_2009_49_6_a4
V. A. Dykhta; O. N. Samsonyuk. A maximum principle for smooth optimal impulsive control problems with multipoint state constraints. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 6, pp. 981-997. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a4/
[1] Zavalischin S. T., Sesekin A. N., Impulsnye protsessy: modeli i prilozheniya, Nauka, M., 1991 | MR
[2] Gurman V. I., Printsip rasshireniya v zadachakh upravleniya, Izd. 2-e, pererab. i dop., Nauka, M., 1997 | MR | Zbl
[3] Miller B. M., Rubinovich E. Ya., Optimizatsiya dinamicheskikh sistem s impulsnymi upravleniyami, Nauka, M., 2005
[4] Dykhta V. A., Samsonyuk O. N., Optimalnoe impulsnoe upravlenie s prilozheniyami, Izd. 2-e, Fizmatlit, M., 2003 | MR | Zbl
[5] Aschepkov L. T., “Obschii printsip maksimuma dlya sistem s promezhutochnymi usloviyami na traektoriyu”, Upravlenie i optimizatsiya, DVO RAN, Vladivostok, 1991, 16–27
[6] Dmitruk A. B., Kaganovich A. M., “Printsip maksimuma dlya zadach optimalnogo upravleniya s promezhutochnymi ogranicheniyami”, Nelineinye dinamich. sistemy i upravlenie, T. 6, Nauka, M, 2008, 1–40
[7] Arutyunov A. V., Okoulevitch A. I., “Necessary optimality conditions for optimal control problems with intermediate constraints”, J. Dynamical and Control Systems, 4:1 (1998), 49–58 | DOI | MR | Zbl
[8] Clarke F. H., Vinter R. B., “Optimal multiprocesses”, SIAM J. Control Optimizat., 27:5 (1989), 1072–1091 | DOI | MR | Zbl
[9] Clarke F. H., Vinter R. B., “Applications of optimal multiprocesses”, SIAM J. Control Optimizat., 27:5 (1989), 1048–1071 | DOI | MR | Zbl
[10] Caines P. E., Clarke F. H., Liu X., Vinter R. B., A maximum principle for hybrid optimal control problems with pathwise state constraints, Decision and Control. 45th IEEE Conf. 13–15 Dec. 2006, 4821–4825
[11] Garavello M., Piccoli B., “Hybrid necessary principle”, SIAM J. Control Optimizat., 43:5 (2005), 1867–1887 | DOI | MR | Zbl
[12] Sussmann H. J., A maximum principle for hybrid optimal control problems, Proc. 38th IEEE Conf. Decision and Control. Phoenix, 1999
[13] Arutyunov A. V., Karamzin D. Yu., Pereira F. L., “A nondegenerate maximum principle for the impulse control problem with state constraints”, SIAM J. Control Optimizat., 43:5 (2005), 1812–1843 | DOI | MR | Zbl
[14] Karamzin D. Yu., “Necessary conditions of the minimum in impulsive control problems with vector measures”, J. Math. Sci., 139:6 (2006), 7087–7150 | DOI | MR | Zbl
[15] Pereira F. L., “A maximum principle for impulsive control problems with state constraints”, Comput. Appl. Math., 19:2 (2000), 137–155 | MR | Zbl
[16] Silva G. N., Litvinchev I. S., Rojas-Medar M., Brandao A. J. V., “State constraints in optimal impulsive controls”, Comput. Appl. Math., 19:2 (2000), 179–206 | MR | Zbl
[17] Monteiro Marques M. D. P., Differential inclusions in nonsmooth mechanical problems: shocks and dry friction, Birkhäuser, Basel etc., 1993 | MR | Zbl
[18] Dykhta V. A., Samsonyuk O. N., “Printsip maksimuma v negladkikh zadachakh optimalnogo impulsnogo upravleniya s mnogotochechnymi fazoogranicheniyami”, Izv. vuzov. Matem., 2001, no. 2, 19–32 | MR | Zbl
[19] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961
[20] Vinter R. B., Pereira F. L., “A maximum principle for optimal processes with discontinuous trajectories”, SIAM J. Control Optimizat., 26:1 (1988), 205–229 | DOI | MR | Zbl
[21] Silva G. N., Vinter R. B., “Necessary optimality conditions for optimal impulsive control problem”, SIAM J. Control Optimizat., 35:6 (1997), 1829–1846 | DOI | MR | Zbl
[22] Dykhta V. A., “Neobkhodimye usloviya optimalnosti impulsnykh protsessov pri ogranicheniyakh na obraz upravlyayuschei mery”, Izv. vuzov. Matematika, 1996, no. 12, 9–16 | MR | Zbl
[23] Motta M., Rampazzo F., “Space-time trajectories of nonlinear systems driven by ordinary and impulsive controls”, Differential and Integral Equat., 8:2 (1995), 269–288 | MR | Zbl
[24] Dorroh J. R., Ferreyra G., “A multistate, multicontrol problem with unbounded controls”, SIAM J. Control Optimizat., 32:5 (1994), 1322–1331 | DOI | MR | Zbl