A maximum principle for smooth optimal impulsive control problems with multipoint state constraints
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 6, pp. 981-997 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A nonlinear optimal impulsive control problem with trajectories of bounded variation subject to intermediate state constraints at a finite number on nonfixed instants of time is considered. Features of this problem are discussed from the viewpoint of the extension of the classical optimal control problem with the corresponding state constraints. A necessary optimality condition is formulated in the form of a smooth maximum principle; thorough comments are given, a short proof is presented, and examples are discussed.
@article{ZVMMF_2009_49_6_a4,
     author = {V. A. Dykhta and O. N. Samsonyuk},
     title = {A~maximum principle for smooth optimal impulsive control problems with multipoint state constraints},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {981--997},
     year = {2009},
     volume = {49},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a4/}
}
TY  - JOUR
AU  - V. A. Dykhta
AU  - O. N. Samsonyuk
TI  - A maximum principle for smooth optimal impulsive control problems with multipoint state constraints
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 981
EP  - 997
VL  - 49
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a4/
LA  - ru
ID  - ZVMMF_2009_49_6_a4
ER  - 
%0 Journal Article
%A V. A. Dykhta
%A O. N. Samsonyuk
%T A maximum principle for smooth optimal impulsive control problems with multipoint state constraints
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 981-997
%V 49
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a4/
%G ru
%F ZVMMF_2009_49_6_a4
V. A. Dykhta; O. N. Samsonyuk. A maximum principle for smooth optimal impulsive control problems with multipoint state constraints. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 6, pp. 981-997. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a4/

[1] Zavalischin S. T., Sesekin A. N., Impulsnye protsessy: modeli i prilozheniya, Nauka, M., 1991 | MR

[2] Gurman V. I., Printsip rasshireniya v zadachakh upravleniya, Izd. 2-e, pererab. i dop., Nauka, M., 1997 | MR | Zbl

[3] Miller B. M., Rubinovich E. Ya., Optimizatsiya dinamicheskikh sistem s impulsnymi upravleniyami, Nauka, M., 2005

[4] Dykhta V. A., Samsonyuk O. N., Optimalnoe impulsnoe upravlenie s prilozheniyami, Izd. 2-e, Fizmatlit, M., 2003 | MR | Zbl

[5] Aschepkov L. T., “Obschii printsip maksimuma dlya sistem s promezhutochnymi usloviyami na traektoriyu”, Upravlenie i optimizatsiya, DVO RAN, Vladivostok, 1991, 16–27

[6] Dmitruk A. B., Kaganovich A. M., “Printsip maksimuma dlya zadach optimalnogo upravleniya s promezhutochnymi ogranicheniyami”, Nelineinye dinamich. sistemy i upravlenie, T. 6, Nauka, M, 2008, 1–40

[7] Arutyunov A. V., Okoulevitch A. I., “Necessary optimality conditions for optimal control problems with intermediate constraints”, J. Dynamical and Control Systems, 4:1 (1998), 49–58 | DOI | MR | Zbl

[8] Clarke F. H., Vinter R. B., “Optimal multiprocesses”, SIAM J. Control Optimizat., 27:5 (1989), 1072–1091 | DOI | MR | Zbl

[9] Clarke F. H., Vinter R. B., “Applications of optimal multiprocesses”, SIAM J. Control Optimizat., 27:5 (1989), 1048–1071 | DOI | MR | Zbl

[10] Caines P. E., Clarke F. H., Liu X., Vinter R. B., A maximum principle for hybrid optimal control problems with pathwise state constraints, Decision and Control. 45th IEEE Conf. 13–15 Dec. 2006, 4821–4825

[11] Garavello M., Piccoli B., “Hybrid necessary principle”, SIAM J. Control Optimizat., 43:5 (2005), 1867–1887 | DOI | MR | Zbl

[12] Sussmann H. J., A maximum principle for hybrid optimal control problems, Proc. 38th IEEE Conf. Decision and Control. Phoenix, 1999

[13] Arutyunov A. V., Karamzin D. Yu., Pereira F. L., “A nondegenerate maximum principle for the impulse control problem with state constraints”, SIAM J. Control Optimizat., 43:5 (2005), 1812–1843 | DOI | MR | Zbl

[14] Karamzin D. Yu., “Necessary conditions of the minimum in impulsive control problems with vector measures”, J. Math. Sci., 139:6 (2006), 7087–7150 | DOI | MR | Zbl

[15] Pereira F. L., “A maximum principle for impulsive control problems with state constraints”, Comput. Appl. Math., 19:2 (2000), 137–155 | MR | Zbl

[16] Silva G. N., Litvinchev I. S., Rojas-Medar M., Brandao A. J. V., “State constraints in optimal impulsive controls”, Comput. Appl. Math., 19:2 (2000), 179–206 | MR | Zbl

[17] Monteiro Marques M. D. P., Differential inclusions in nonsmooth mechanical problems: shocks and dry friction, Birkhäuser, Basel etc., 1993 | MR | Zbl

[18] Dykhta V. A., Samsonyuk O. N., “Printsip maksimuma v negladkikh zadachakh optimalnogo impulsnogo upravleniya s mnogotochechnymi fazoogranicheniyami”, Izv. vuzov. Matem., 2001, no. 2, 19–32 | MR | Zbl

[19] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961

[20] Vinter R. B., Pereira F. L., “A maximum principle for optimal processes with discontinuous trajectories”, SIAM J. Control Optimizat., 26:1 (1988), 205–229 | DOI | MR | Zbl

[21] Silva G. N., Vinter R. B., “Necessary optimality conditions for optimal impulsive control problem”, SIAM J. Control Optimizat., 35:6 (1997), 1829–1846 | DOI | MR | Zbl

[22] Dykhta V. A., “Neobkhodimye usloviya optimalnosti impulsnykh protsessov pri ogranicheniyakh na obraz upravlyayuschei mery”, Izv. vuzov. Matematika, 1996, no. 12, 9–16 | MR | Zbl

[23] Motta M., Rampazzo F., “Space-time trajectories of nonlinear systems driven by ordinary and impulsive controls”, Differential and Integral Equat., 8:2 (1995), 269–288 | MR | Zbl

[24] Dorroh J. R., Ferreyra G., “A multistate, multicontrol problem with unbounded controls”, SIAM J. Control Optimizat., 32:5 (1994), 1322–1331 | DOI | MR | Zbl