A maximum principle for smooth optimal impulsive control problems with multipoint state constraints
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 6, pp. 981-997

Voir la notice de l'article provenant de la source Math-Net.Ru

A nonlinear optimal impulsive control problem with trajectories of bounded variation subject to intermediate state constraints at a finite number on nonfixed instants of time is considered. Features of this problem are discussed from the viewpoint of the extension of the classical optimal control problem with the corresponding state constraints. A necessary optimality condition is formulated in the form of a smooth maximum principle; thorough comments are given, a short proof is presented, and examples are discussed.
@article{ZVMMF_2009_49_6_a4,
     author = {V. A. Dykhta and O. N. Samsonyuk},
     title = {A~maximum principle for smooth optimal impulsive control problems with multipoint state constraints},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {981--997},
     publisher = {mathdoc},
     volume = {49},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a4/}
}
TY  - JOUR
AU  - V. A. Dykhta
AU  - O. N. Samsonyuk
TI  - A maximum principle for smooth optimal impulsive control problems with multipoint state constraints
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 981
EP  - 997
VL  - 49
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a4/
LA  - ru
ID  - ZVMMF_2009_49_6_a4
ER  - 
%0 Journal Article
%A V. A. Dykhta
%A O. N. Samsonyuk
%T A maximum principle for smooth optimal impulsive control problems with multipoint state constraints
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 981-997
%V 49
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a4/
%G ru
%F ZVMMF_2009_49_6_a4
V. A. Dykhta; O. N. Samsonyuk. A maximum principle for smooth optimal impulsive control problems with multipoint state constraints. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 6, pp. 981-997. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a4/