Convergence of the Lavrent'ev method
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 6, pp. 958-965 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The convergence of the Lavrent'ev method, which is a well-known regularization method for integral equations of the first kind, is analyzed as applied to equations with arbitrary linear bounded operators. A theorem concerning necessary and sufficient conditions for this convergence is proved. It is shown that these conditions are satisfied for two classes of integral equations that do not possess the properties required by the classical Lavrent'ev method.
@article{ZVMMF_2009_49_6_a2,
     author = {G. V. Khromova},
     title = {Convergence of the {Lavrent'ev} method},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {958--965},
     year = {2009},
     volume = {49},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a2/}
}
TY  - JOUR
AU  - G. V. Khromova
TI  - Convergence of the Lavrent'ev method
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 958
EP  - 965
VL  - 49
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a2/
LA  - ru
ID  - ZVMMF_2009_49_6_a2
ER  - 
%0 Journal Article
%A G. V. Khromova
%T Convergence of the Lavrent'ev method
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 958-965
%V 49
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a2/
%G ru
%F ZVMMF_2009_49_6_a2
G. V. Khromova. Convergence of the Lavrent'ev method. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 6, pp. 958-965. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a2/

[1] Lavrentev M. M., O nekotorykh nekorrektnykh zadachakh matematicheskoi fiziki, SO AN SSSR, Novosibirsk, 1962 | MR

[2] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978 | MR

[3] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR

[4] Denisov A. M., “O priblizhennom reshenii uravneniya Volterra I roda”, Zh. vychisl. matem. i matem. fiz., 15:4 (1975), 1053–1056 | MR | Zbl

[5] Danford N., Shvarts Dzh. T., Lineinye operatory. Obschaya teoriya, Izd-vo inostr. lit., M., 1962

[6] Khromov A. P., “Ob obraschenii integralnykh operatorov s yadrami, razryvnymi na diagonalyakh”, Matem. zametki, 64:6 (1998), 932–942 | MR | Zbl

[7] Kornev V. V., Khromov A. P., “O ravnoskhodimosti razlozhenii po sobstvennym funktsiyam integralnykh operatorov s yadrami, dopuskayuschimi razryvy proizvodnykh na diagonalyakh”, Matem. sb., 192:10 (2001), 33–50 | MR | Zbl

[8] Khromov A. P., “O ravnoskhodimosti razlozhenii po sobstvennym funktsiyam integralnykh operatorov s peremennymi predelami integrirovaniya”, Integralnye preobrazovaniya i spetsialnye funktsii. Informatsionnyi byulleten, 6:1 (2006), 46–55 | MR