Development and tending to steady state of subsonic gas condensation on a plane condensed phase
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 6, pp. 1103-1118 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The kinetic equation for a monatomic gas with a model collision operator (S-model) is used to study the development and tending to steady state of one-dimensional unsteady half-space gas condensation on a plane condensed phase. Initially, the gas is at rest and in equilibrium with the body's surface and, then, the body temperature suddenly drops to a constant value. The problem is solved using an implicit second-order accurate quasi-monotone scheme. The process of reaching a steady flow regime is of primary interest. The effect of the evaporation (condensation) coefficient on the flow pattern is analyzed.
@article{ZVMMF_2009_49_6_a12,
     author = {V. A. Titarev and E. M. Shakhov},
     title = {Development and tending to steady state of subsonic gas condensation on a~plane condensed phase},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1103--1118},
     year = {2009},
     volume = {49},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a12/}
}
TY  - JOUR
AU  - V. A. Titarev
AU  - E. M. Shakhov
TI  - Development and tending to steady state of subsonic gas condensation on a plane condensed phase
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 1103
EP  - 1118
VL  - 49
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a12/
LA  - ru
ID  - ZVMMF_2009_49_6_a12
ER  - 
%0 Journal Article
%A V. A. Titarev
%A E. M. Shakhov
%T Development and tending to steady state of subsonic gas condensation on a plane condensed phase
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 1103-1118
%V 49
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a12/
%G ru
%F ZVMMF_2009_49_6_a12
V. A. Titarev; E. M. Shakhov. Development and tending to steady state of subsonic gas condensation on a plane condensed phase. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 6, pp. 1103-1118. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a12/

[1] Kogan M. N., Makashev N. K., “O roli sloya Knudsena v teorii geterogennykh reaktsii i v techeniyakh s reaktsiyami na poverkhnosti”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1971, no. 6, 3–11

[2] Bishaev A. M., Rykov V. A., “Issledovanie zadachi o b odnomernom stoke na osnove kineticheskogo uravneniya”, Chisl. metody v dinamike razrezhennykh gazov, Vyp. 1, M., 1972, 9–21 | MR

[3] Abramov A. A., Kogan M. N., “Silnaya dozvukovaya kondensatsiya odnoatomnogo gaza”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1989, no. 1, 165–169

[4] Sone Y., Aoki K., Yamashita I., “A study of unsteady strong condensation on a plane condensed phase with special interest in formation of steady profile”, Proc. 15th Internat. Symp. Rarefied Gas Dymanics, V. 2, Stuttgart, 1986, 323–333 | Zbl

[5] Shakhov E. M., “Ob obobschenii relaksatsionnogo kineticheskogo uravneniya Kruka”, Izv. AN SSSR. Mekhan. zhidkosti i gaza, 1968, no. 5, 142–145

[6] Titarev V. A., Shakhov E. M., “Teplootdacha i isparenie s ploskoi poverkhnosti v poluprostranstvo pri vnezapnom povyshenii temperatury tela”, Izv. RAN. Mekhan. zhidkosti i gaza, 2002, no. 1, 141–153 | MR | Zbl

[7] Titarev V. A., Shakhov E. M., “Chislennyi raschet poperechnogo obtekaniya kholodnoi plastiny giperzvukovym potokom razrezhennogo gaza”, Izv. RAN. Mekhan. zhidkosti i gaza, 2005, no. 5, 139–154

[8] Titarev V. A., Shakhov E. M., “Chislennyi analiz vintovogo techeniya Kuetta razrezhennogo gaza mezhdu koaksialnymi tsilindrami”, Zh. vychisl. matem. i matem. fiz., 46:3 (2006), 527–535 | MR | Zbl

[9] Titarev V. A., “Conservative numerical methods for model kinetic equations”, Computers and Fluids, 36:9 (2007), 1446–1459 | DOI | MR

[10] Bhathnagar P. L., Gross E. P., Krook M., “A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems”, Phys. Rev., 94:3 (1954), 511–525 | DOI

[11] Landau L. D., Lifshits E. M., Teoreticheskaya fizika. T. 5. Statisticheskaya fizika, Nauka, M., 1964 | Zbl

[12] Chu C. K., “Kinetic-theoretic description of the formation of a shock wave”, Phys. Fluids, 8:1 (1965), 12–22 | DOI

[13] Ivanov M. Ya., Nigmatullin R. Z., “Neyavnaya skhema S. K. Godunova povyshennoi tochnosti dlya chislennogo integrirovaniya uravnenii Eilera”, Zh. vychisl. matem. i matem. fiz., 27:11 (1987), 1725–1735 | MR | Zbl

[14] Yang J. Y., Huang J. C., “Rarefied flow computations using nonlinear model Boltzmann equations”, J. Comput. Phys., 120:2 (1995), 323–339 | DOI | Zbl

[15] Shakhov E. M., “O metode rasschepleniya dlya kineticheskogo uravneniya Boltsmana pri malykh chislakh Knudsena”, Zh. vychisl. matem. i matem. fiz., 41:1 (2001), 141–156 | MR | Zbl

[16] Kolgan V. P., “Primenenie printsipa minimalnykh znachenii proizvodnoi k postroeniyu konechno-raznostnykh skhem dlya rascheta razryvnykh techenii gazovoi dinamiki”, Uch. zap. TsAGI, 3:6 (1972), 68–77

[17] Tillyaeva N. I., “Obobschenie modifitsirovannoi skhemy S.K. Godunova na proizvolnye neregulyarnye setki”, Uch. zap. TsAGI, 17:2 (1986), 19–26

[18] Mieussens L., “Discrete-velocity models and numerical schemes for the Boltzmann-BGK equation in plane and axisymmetric geometries”, J. Comput. Phys., 162:2 (2000), 429–466 | DOI | MR | Zbl

[19] Gusarov A. V., Smurov I., “Gas-dynamic boundary conditions of evaporation and condensation: numerical analysis of the Knudsen layer”, Phys. Fluids, 14:12 (2002), 4242–4255 | DOI | MR