Formulation and well-posedness of the Cauchy problem for a diffusion equation with discontinuous degenerating coefficients
    
    
  
  
  
      
      
      
        
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 6, pp. 1085-1102
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              The choice of a differential diffusion operator with discontinuous coefficients that corresponds to a finite flow velocity and a finite concentration is substantiated. For the equation with a uniformly elliptic operator and a nonzero diffusion coefficient, conditions are established for the existence and uniqueness of a solution to the corresponding Cauchy problem. For the diffusion equation with degeneration on a half-line, it is proved that the Cauchy problem with an arbitrary initial condition has a unique solution if and only if there is no flux from the degeneration domain to the ellipticity domain of the operator. Under this condition, a sequence of solutions to regularized problems is proved to converge uniformly to the solution of the degenerate problem in $L_1(R)$ on each interval.
            
            
            
          
        
      @article{ZVMMF_2009_49_6_a11,
     author = {L. V. Korobenko and V. Zh. Sakbaev},
     title = {Formulation and well-posedness of the {Cauchy} problem for a~diffusion equation with discontinuous degenerating coefficients},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1085--1102},
     publisher = {mathdoc},
     volume = {49},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a11/}
}
                      
                      
                    TY - JOUR AU - L. V. Korobenko AU - V. Zh. Sakbaev TI - Formulation and well-posedness of the Cauchy problem for a diffusion equation with discontinuous degenerating coefficients JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 1085 EP - 1102 VL - 49 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a11/ LA - ru ID - ZVMMF_2009_49_6_a11 ER -
%0 Journal Article %A L. V. Korobenko %A V. Zh. Sakbaev %T Formulation and well-posedness of the Cauchy problem for a diffusion equation with discontinuous degenerating coefficients %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2009 %P 1085-1102 %V 49 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a11/ %G ru %F ZVMMF_2009_49_6_a11
L. V. Korobenko; V. Zh. Sakbaev. Formulation and well-posedness of the Cauchy problem for a diffusion equation with discontinuous degenerating coefficients. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 6, pp. 1085-1102. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a11/
