Formulation and well-posedness of the Cauchy problem for a diffusion equation with discontinuous degenerating coefficients
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 6, pp. 1085-1102

Voir la notice de l'article provenant de la source Math-Net.Ru

The choice of a differential diffusion operator with discontinuous coefficients that corresponds to a finite flow velocity and a finite concentration is substantiated. For the equation with a uniformly elliptic operator and a nonzero diffusion coefficient, conditions are established for the existence and uniqueness of a solution to the corresponding Cauchy problem. For the diffusion equation with degeneration on a half-line, it is proved that the Cauchy problem with an arbitrary initial condition has a unique solution if and only if there is no flux from the degeneration domain to the ellipticity domain of the operator. Under this condition, a sequence of solutions to regularized problems is proved to converge uniformly to the solution of the degenerate problem in $L_1(R)$ on each interval.
@article{ZVMMF_2009_49_6_a11,
     author = {L. V. Korobenko and V. Zh. Sakbaev},
     title = {Formulation and well-posedness of the {Cauchy} problem for a~diffusion equation with discontinuous degenerating coefficients},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1085--1102},
     publisher = {mathdoc},
     volume = {49},
     number = {6},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a11/}
}
TY  - JOUR
AU  - L. V. Korobenko
AU  - V. Zh. Sakbaev
TI  - Formulation and well-posedness of the Cauchy problem for a diffusion equation with discontinuous degenerating coefficients
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 1085
EP  - 1102
VL  - 49
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a11/
LA  - ru
ID  - ZVMMF_2009_49_6_a11
ER  - 
%0 Journal Article
%A L. V. Korobenko
%A V. Zh. Sakbaev
%T Formulation and well-posedness of the Cauchy problem for a diffusion equation with discontinuous degenerating coefficients
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 1085-1102
%V 49
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a11/
%G ru
%F ZVMMF_2009_49_6_a11
L. V. Korobenko; V. Zh. Sakbaev. Formulation and well-posedness of the Cauchy problem for a diffusion equation with discontinuous degenerating coefficients. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 6, pp. 1085-1102. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a11/