Formulation and well-posedness of the Cauchy problem for a diffusion equation with discontinuous degenerating coefficients
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 6, pp. 1085-1102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The choice of a differential diffusion operator with discontinuous coefficients that corresponds to a finite flow velocity and a finite concentration is substantiated. For the equation with a uniformly elliptic operator and a nonzero diffusion coefficient, conditions are established for the existence and uniqueness of a solution to the corresponding Cauchy problem. For the diffusion equation with degeneration on a half-line, it is proved that the Cauchy problem with an arbitrary initial condition has a unique solution if and only if there is no flux from the degeneration domain to the ellipticity domain of the operator. Under this condition, a sequence of solutions to regularized problems is proved to converge uniformly to the solution of the degenerate problem in $L_1(R)$ on each interval.
@article{ZVMMF_2009_49_6_a11,
     author = {L. V. Korobenko and V. Zh. Sakbaev},
     title = {Formulation and well-posedness of the {Cauchy} problem for a~diffusion equation with discontinuous degenerating coefficients},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {1085--1102},
     year = {2009},
     volume = {49},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a11/}
}
TY  - JOUR
AU  - L. V. Korobenko
AU  - V. Zh. Sakbaev
TI  - Formulation and well-posedness of the Cauchy problem for a diffusion equation with discontinuous degenerating coefficients
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 1085
EP  - 1102
VL  - 49
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a11/
LA  - ru
ID  - ZVMMF_2009_49_6_a11
ER  - 
%0 Journal Article
%A L. V. Korobenko
%A V. Zh. Sakbaev
%T Formulation and well-posedness of the Cauchy problem for a diffusion equation with discontinuous degenerating coefficients
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 1085-1102
%V 49
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a11/
%G ru
%F ZVMMF_2009_49_6_a11
L. V. Korobenko; V. Zh. Sakbaev. Formulation and well-posedness of the Cauchy problem for a diffusion equation with discontinuous degenerating coefficients. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 6, pp. 1085-1102. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a11/

[1] Malkovich R. Sh., Matematika diffuzii v poluprovodnikakh, Nauka, S.-Peterburg, 1999 | Zbl

[2] Smirnov A. A., Molekulyarno-kineticheskaya teoriya metallov, Nauka, M., 1966

[3] Gadella M., Kuru S., Negor J., “Selph-adjoint Hamiltonians with a mass jump: general matching conditions”, Phys. Letts. A, 362 (2007), 265–268 | DOI | MR

[4] Gikhman I. I., Skorokhod A. B., Vvedenie v teoriyu sluchainykh protsessov, Nauka, M., 1977 | MR

[5] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, Izd. 2-e, Mir, M., 1964 | Zbl

[6] Freidlin M. I., Venttsel A. D., Fluktuatsii v dinamicheskikh sistemakh pod deistviem malykh sluchainykh vozmuschenii, Nauka, M., 1979 | MR

[7] Ladyzhenskaya O. A., Kraevye zadachi uravnenii matematicheskoi fiziki, Nauka, M., 1973 | MR

[8] Kolokoltsov V. N., “Operator Shredingera s singulyarnym potentsialom i magnitnymi polyami”, Matem. sb., 194:6 (2003), 105–126 | MR

[9] Savchuk A. M., Shkalikov A. A., “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Matem. zametki, 66:6 (1999), 897–912 | MR | Zbl

[10] Golopuz S. A., “Opredelyayuschie granichnye usloviya i vyrozhdennaya zadacha dlya ellipticheskikh kraevykh zadach s malym parametrom pri starshikh proizvodnykh”, Matem. sb., 194:5 (2003), 3–30 | MR | Zbl

[11] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Fizmatlit, M., 1993 | MR | Zbl

[12] Sakbaev V. Zh., “O funktsionalakh na resheniyakh zadachi Koshi dlya uravneniya Shredingera s vyrozhdeniem na polupryamoi”, Zh. vychisl. matem. i matem. fiz., 44:9 (2004), 1654–1673 | MR | Zbl

[13] Korobenko L. V., Sakbaev V. Zh., “Reshenie uravneniya diffuzii na pryamoi s razryvnym koeffitsientom”, Nekotorye probl. fundamentalnoi i prikl. matem., MFTI, M., 2007, 71–85

[14] Fridman A., Uravneniya s chastnymi proizvodnymi parabolicheskogo tipa, Mir, M., 1968

[15] Maslennikova V. N., Differentsialnye uravneniya v chastnykh proizvodnykh, RUDN, M., 1997

[16] Vladimirov B. C., Uravneniya matematicheskoi fiziki, Nauka, M., 1981 | MR

[17] Vilenkin N. Ya., Gorin E. A., Kostyuchenko A. G. i dr., Funktsionalnyi analiz, Nauka, M., 1964 | Zbl

[18] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, Nauka, M., 1977

[19] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl