@article{ZVMMF_2009_49_6_a1,
author = {I. E. Kaporin and I. N. Kon'shin},
title = {Post-filtering of {IC2-factors} for load balancing in parallel preconditioning},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {940--957},
year = {2009},
volume = {49},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a1/}
}
TY - JOUR AU - I. E. Kaporin AU - I. N. Kon'shin TI - Post-filtering of IC2-factors for load balancing in parallel preconditioning JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 940 EP - 957 VL - 49 IS - 6 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a1/ LA - ru ID - ZVMMF_2009_49_6_a1 ER -
%0 Journal Article %A I. E. Kaporin %A I. N. Kon'shin %T Post-filtering of IC2-factors for load balancing in parallel preconditioning %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2009 %P 940-957 %V 49 %N 6 %U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a1/ %G ru %F ZVMMF_2009_49_6_a1
I. E. Kaporin; I. N. Kon'shin. Post-filtering of IC2-factors for load balancing in parallel preconditioning. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 6, pp. 940-957. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a1/
[1] Kaporin I. E., “New convergence results and preconditioning strategies for the conjugate gradient method”, Numer. Linear Algebra Appls., 1 (1994), 179–210 | DOI | MR | Zbl
[2] Kaporin I. E., Konshin I. N., “Parallelnoe reshenie simmetrichnykh polozhitelno-opredelennykh sistem na osnove perekryvayuschegosya razbieniya na bloki”, Zh. vychisl. matem. i matem. fiz., 41:4 (2001), 515–528 | MR | Zbl
[3] Kaporin I. E., Konshin I. N., “A parallel block overlap preconditioning with inexact submatrix inversion for linear elasticity problems”, Numer. Lin. Algebra Appl., 9 (2002), 141–162 | DOI | MR | Zbl
[4] Kaporin I. E., Konshin I. N., “Parallelnoe reshenie lineinykh sistem pri ispolzovanii priblizhennoi faktorizatsii perekryvayuschikhsya blokov”, Matem. modelirovanie. Probl. i rezultaty, Nauka, M., 2003, 315–326
[5] Kaporin I. E., Konshin I. N., “Post-filtering of IC factors for load balancing in parallel preconditioned CG solvers”, Numer. Geometry, Grid Generation and High Performance Computing, Computing Center Rus. Acad. Sci., Moscow, 2008, 158–164
[6] Kaporin I. E., “High quality preconditionings of a general symmetric positive definite matrix based on its $U^{\mathrm T}U+U^{\mathrm T}R+R^{\mathrm T}U$-decomposition”, Numer. Linear. Algebra Appl., 5 (1998), 483–509 | 3.0.CO;2-7 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[7] Jennings A., Malik G. M., “Partial elimination”, J. Inst. Math. Appl., 20 (1977), 307–316 | DOI | MR | Zbl
[8] Notay Y., “On the convergence rate of the conjugate gradients in presence of rounding errors”, Numer. Math., 65 (1993), 301–317 | DOI | MR | Zbl
[9] Manteuffel T. A., “An incomplete factorization technique for positive definite linear systems”, Math. Comput., 34 (1980), 473–497 | DOI | MR | Zbl
[10] Kaporin I. E., Optimizing the $U^{\mathrm T}U+U^{\mathrm T}R+R^{\mathrm T}U$-decomposition based conjugate gradient preconditionings, Rept 0030. November 2000, Dept. Math., Catholic Univ. Nijmegen, Nijmegen, 2000, 16 pp.
[11] Benzi M., Tuma T., “A robust incomplete factorization preconditioner for positive definite matrices”, Numer. Linear Algebra Appl., 10 (2003), 385–400 | DOI | MR | Zbl
[12] Karypis G., Kumar V., Multilevel $k$-way hypergraph partitioning, Techn. Rept. 98-036, Dept. Comput. Sci. Engrgs. Army HPC Res. Center, Univ. Minnesota, Minnesota, 1998
[13] Davis T. A., University of Florida sparse matrix collection, , 2008 http://www.cise.ufl.edu/research/sparse/matrices
[14] Maclahlan S., Saad Y., “A greedy strategy for coarse-grid selection”, SIAM J. Sci. Comput., 29:5 (2007), 1825–1853 | DOI | MR
[15] Saad Y., Suchomel B., “ARMS: An algebraic recursive multilevel solver for general sparse linear systems”, Numer. Linear Algebra Appl., 9 (2002), 359–378 | DOI | MR | Zbl
[16] Ruge J. W., Stüben K., “Algebraic multigrid (AMG)”, Multigrid Methods, Frontiers Appl. Math., 3, SIAM, Philadelphia, 1987, 73–130 | MR