Post-filtering of IC2-factors for load balancing in parallel preconditioning
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 6, pp. 940-957 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A modification is proposed for the second order incomplete Cholesky decomposition (IC2). It makes possible to design a preconditioning procedure for the conjugate gradient method (CGM) with a controllable fill-in in the preconditioner. The modified algorithm is used to develop a load-balancing parallel preconditioning for CGM as applied to linear systems with symmetric positive definite matrices. Numerical results obtained using a multiprocessor computer system are presented.
@article{ZVMMF_2009_49_6_a1,
     author = {I. E. Kaporin and I. N. Kon'shin},
     title = {Post-filtering of {IC2-factors} for load balancing in parallel preconditioning},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {940--957},
     year = {2009},
     volume = {49},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a1/}
}
TY  - JOUR
AU  - I. E. Kaporin
AU  - I. N. Kon'shin
TI  - Post-filtering of IC2-factors for load balancing in parallel preconditioning
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 940
EP  - 957
VL  - 49
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a1/
LA  - ru
ID  - ZVMMF_2009_49_6_a1
ER  - 
%0 Journal Article
%A I. E. Kaporin
%A I. N. Kon'shin
%T Post-filtering of IC2-factors for load balancing in parallel preconditioning
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 940-957
%V 49
%N 6
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a1/
%G ru
%F ZVMMF_2009_49_6_a1
I. E. Kaporin; I. N. Kon'shin. Post-filtering of IC2-factors for load balancing in parallel preconditioning. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 6, pp. 940-957. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_6_a1/

[1] Kaporin I. E., “New convergence results and preconditioning strategies for the conjugate gradient method”, Numer. Linear Algebra Appls., 1 (1994), 179–210 | DOI | MR | Zbl

[2] Kaporin I. E., Konshin I. N., “Parallelnoe reshenie simmetrichnykh polozhitelno-opredelennykh sistem na osnove perekryvayuschegosya razbieniya na bloki”, Zh. vychisl. matem. i matem. fiz., 41:4 (2001), 515–528 | MR | Zbl

[3] Kaporin I. E., Konshin I. N., “A parallel block overlap preconditioning with inexact submatrix inversion for linear elasticity problems”, Numer. Lin. Algebra Appl., 9 (2002), 141–162 | DOI | MR | Zbl

[4] Kaporin I. E., Konshin I. N., “Parallelnoe reshenie lineinykh sistem pri ispolzovanii priblizhennoi faktorizatsii perekryvayuschikhsya blokov”, Matem. modelirovanie. Probl. i rezultaty, Nauka, M., 2003, 315–326

[5] Kaporin I. E., Konshin I. N., “Post-filtering of IC factors for load balancing in parallel preconditioned CG solvers”, Numer. Geometry, Grid Generation and High Performance Computing, Computing Center Rus. Acad. Sci., Moscow, 2008, 158–164

[6] Kaporin I. E., “High quality preconditionings of a general symmetric positive definite matrix based on its $U^{\mathrm T}U+U^{\mathrm T}R+R^{\mathrm T}U$-decomposition”, Numer. Linear. Algebra Appl., 5 (1998), 483–509 | 3.0.CO;2-7 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[7] Jennings A., Malik G. M., “Partial elimination”, J. Inst. Math. Appl., 20 (1977), 307–316 | DOI | MR | Zbl

[8] Notay Y., “On the convergence rate of the conjugate gradients in presence of rounding errors”, Numer. Math., 65 (1993), 301–317 | DOI | MR | Zbl

[9] Manteuffel T. A., “An incomplete factorization technique for positive definite linear systems”, Math. Comput., 34 (1980), 473–497 | DOI | MR | Zbl

[10] Kaporin I. E., Optimizing the $U^{\mathrm T}U+U^{\mathrm T}R+R^{\mathrm T}U$-decomposition based conjugate gradient preconditionings, Rept 0030. November 2000, Dept. Math., Catholic Univ. Nijmegen, Nijmegen, 2000, 16 pp.

[11] Benzi M., Tuma T., “A robust incomplete factorization preconditioner for positive definite matrices”, Numer. Linear Algebra Appl., 10 (2003), 385–400 | DOI | MR | Zbl

[12] Karypis G., Kumar V., Multilevel $k$-way hypergraph partitioning, Techn. Rept. 98-036, Dept. Comput. Sci. Engrgs. Army HPC Res. Center, Univ. Minnesota, Minnesota, 1998

[13] Davis T. A., University of Florida sparse matrix collection, , 2008 http://www.cise.ufl.edu/research/sparse/matrices

[14] Maclahlan S., Saad Y., “A greedy strategy for coarse-grid selection”, SIAM J. Sci. Comput., 29:5 (2007), 1825–1853 | DOI | MR

[15] Saad Y., Suchomel B., “ARMS: An algebraic recursive multilevel solver for general sparse linear systems”, Numer. Linear Algebra Appl., 9 (2002), 359–378 | DOI | MR | Zbl

[16] Ruge J. W., Stüben K., “Algebraic multigrid (AMG)”, Multigrid Methods, Frontiers Appl. Math., 3, SIAM, Philadelphia, 1987, 73–130 | MR