Error estimation of grain distribution function recovery for dependent orientations with allowance for grain sizes
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 5, pp. 879-890 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

he effect of the kernel on the smoothing of orientations in a kernel method was studied, and the influence of dependent orientations and the grain sizes on the resulting distribution was analyzed. Discrete central normal distributions on the group $\mathrm{SO}(3)$ were smoothed by the kernel method. This problem is motivated by the development of experimental tools for studying the texture of polycrystalline materials, especially electron microscopy, which makes it possible to measure the orientations of individual grains.
@article{ZVMMF_2009_49_5_a9,
     author = {T. I. Savyolova and M. V. Sypchenko},
     title = {Error estimation of grain distribution function recovery for dependent orientations with allowance for grain sizes},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {879--890},
     year = {2009},
     volume = {49},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a9/}
}
TY  - JOUR
AU  - T. I. Savyolova
AU  - M. V. Sypchenko
TI  - Error estimation of grain distribution function recovery for dependent orientations with allowance for grain sizes
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 879
EP  - 890
VL  - 49
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a9/
LA  - ru
ID  - ZVMMF_2009_49_5_a9
ER  - 
%0 Journal Article
%A T. I. Savyolova
%A M. V. Sypchenko
%T Error estimation of grain distribution function recovery for dependent orientations with allowance for grain sizes
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 879-890
%V 49
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a9/
%G ru
%F ZVMMF_2009_49_5_a9
T. I. Savyolova; M. V. Sypchenko. Error estimation of grain distribution function recovery for dependent orientations with allowance for grain sizes. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 5, pp. 879-890. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a9/

[1] Bunge H. J., “Texture analysis in material science”, Mathematical methods, Butterworths, London, 1982, 591

[2] Savelova T. I., Ivanova T. M., “Obzor metodov vosstanovleniya funktsii raspredeleniya orientatsii po polyusnym figuram”, Zavodskaya laboratoriya, 78:7 (2008), 25–33

[3] Borovkov A. A., Matematicheskaya statistika, Nauka, M., 1984, 472 pp. | MR

[4] Devroi Derfi L., Neparametricheskoe otsenivanie plotnosti, $L_1$ podkhod, Mir, M., 1988 | MR

[5] Chentsov H. H., Statisticheskie reshayuschie pravila i optimalnye vyvody, Nauka, M., 1972 | Zbl

[6] Kryanev A. B.,Lukin G. V., Matematicheskie metody obrabotki neopredelennykh dannykh, Fizmatlit, M., 2003

[7] Guilmeau E., Henrist C., Suzuki T. S. et al., “Texture of alumina by neutron diffraction and SEM-EBSD”, ICOTOM 14. Textures of Materials, 495–497 (2005), 1395–1400

[8] Boogaart K. G., Statistic for individual crystallographic orientation measurement, Shaker, Aachen, 2002, 1–161 | Zbl

[9] Boogart K. G., “Statistical errors of texture entities based on EBSD orientation measurements”, ICOTOM 14. Material Science Forum, 495–497 (2005), 179–184 | DOI

[10] Bozzolo N., Gerspach F., Sawina G., Wagner F., “Accuracy of orientation distribution function determination based on EBSD data. A case study of a recrystallized low alloyed Zr sheet”, J. Microscopy, 227 (2007), 275–283 | DOI | MR

[11] Prazolo S., Sursaeva V. G., Prior D. J., “Optical grain size measurements: What is being measured? Comparative study of optical and EBSD grain size determination in 2D Al foil”, ICOTOM 14. Textures of Materials, 495–497 (2005), 213–218

[12] Borovkov M. V., Savelova T. I., Serebryanyi V. N., “Issledovanie statisticheskikh oshibok rentgenovskogo teksturnogo eksperimenta po izmereniyu polyusnykh figur s ispolzovaniem metoda Monte-Karlo”, Zavodskaya laboratoriya, 21:12 (2005), 19–24

[13] Savelova T. I., Korenkova E. F., “Otsenka tochnosti nekotorykh statisticheskikh kharakteristik v teksturnom analize”, Zavodskaya laboratoriya, 72:12 (2006), 29–34

[14] Savelova T. N., Sypchenko M. V., “Vychislenie funktsii raspredeleniya orientatsii po naboru otdelnykh orientirovok na gruppe vraschenii $\mathrm{SO}(3)$”, Zh. vychisl. matem. i matem. fiz., 47:6 (2007), 1015–1028 | MR

[15] Savyolova T. I., Sypchenko M. V., Estimation of accuracy of kernel and projective methods of probability density distribution restoration from individual orientations on group $\mathrm{SO}(3)$, 3-rd French – Russian seminar “New Achievement in Materials and Environmental Sciences”. Metz, 6–9 November 2007, 103

[16] Aganin K. P., Savelova T. I., “Otsenki tochnosti yadernykh i proektsionnykh metodov vosstanovleniya funktsii raspredeleniya orientatsii na gruppe vraschenii $\mathrm{SO}(3)$”, Zh. vychisl. matem. i matem. fiz., 48:6 (2008), 1087–1101 | Zbl

[17] Savelova T. N., “Funktsiya raspredeleniya zeren po orientatsiyam i ikh gaussovskie priblizheniya”, Zavodskaya laboratoriya, 50:5 (1984), 48–52

[18] Borovkov M. V., Savelova T. I., “Vychislenie normalnykh raspredelenii na gruppe vraschenii metodom Monte-Karlo”, Zh. vychisl. matem. i matem. fiz., 42:1 (2002), 112–128 | MR | Zbl

[19] Borovkov M., Savyolova T., “The computational approaches to calculate normal distributions on the rotation group”, J. Appl. Crystalogr., 40 (2007), 449–455 | DOI

[20] Schaeben H., ““Normal” orientation distribution”, Textures and Microstructures, 29 (1997), 201–233 | DOI

[21] Schaeben H., Boogaart K. G., “Spherical harmonics in texture analysis”, Tectonophysics, 370 (2003), 253–268 | DOI