Algorithm for generating a conformal quasi-hierarchical triangular mesh that weakly $\delta$-approximates given polygonal lines
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 5, pp. 874-878 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An algorithm is proposed for generating a conformal quasi-hierarchical triangular mesh that approximates a set of given polygonal lines to accuracy $\delta$. The solvability of the problem is guaranteed by the possibility of shifting the polygonal lines within their $\delta$-neighborhood. The resulting mesh consists of a small number of triangles and admits a multigrid implementation. An estimate is given for the growing number of mesh triangles with decreasing $\delta$ (of order $\log_2^2\delta^{-1}$). The algorithm is applied to a particular set of polygonal lines.
@article{ZVMMF_2009_49_5_a8,
     author = {V. N. Chugunov},
     title = {Algorithm for generating a~conformal quasi-hierarchical triangular mesh that weakly $\delta$-approximates given polygonal lines},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {874--878},
     year = {2009},
     volume = {49},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a8/}
}
TY  - JOUR
AU  - V. N. Chugunov
TI  - Algorithm for generating a conformal quasi-hierarchical triangular mesh that weakly $\delta$-approximates given polygonal lines
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 874
EP  - 878
VL  - 49
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a8/
LA  - ru
ID  - ZVMMF_2009_49_5_a8
ER  - 
%0 Journal Article
%A V. N. Chugunov
%T Algorithm for generating a conformal quasi-hierarchical triangular mesh that weakly $\delta$-approximates given polygonal lines
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 874-878
%V 49
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a8/
%G ru
%F ZVMMF_2009_49_5_a8
V. N. Chugunov. Algorithm for generating a conformal quasi-hierarchical triangular mesh that weakly $\delta$-approximates given polygonal lines. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 5, pp. 874-878. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a8/

[1] Skvortsov A., Triangulyatsiya Delone i ee primenenie, Izd-vo Tomskogo un-ta, Tomsk, 2002

[2] Shaidurov V. V., Mnogosetochnye metody konechnykh elementov, Nauka, M., 1989 | MR

[3] Rivara M., “Mesh refinement processes based on the generalized bisection of simplexes”, SIAM J. Numer. Analys., 21 (1984), 604–613 | DOI | MR | Zbl

[4] Baker B., Grosse E., Rafferty C. S., “Nonobtuse triangulation of polygons”, Disc. and Comput. Geometry, 3 (1988), 147–168 | DOI | MR | Zbl

[5] Bern M., Eppstein D., Gilbert J. R., “Provably good mesh generation”, Proc. 31st Ann. Symp. on Foundations of Comput. Sci. IEEE, 1990, 231–241 | MR

[6] Bänsch E., “Local mesh refinement in 2 and 3 dimensions”, IMPACT of Comput. in Sci. and Engng., 3 (1991), 181–191 | DOI | MR | Zbl

[7] Chew L. P., “Guaranteed-quality mesh generator for cuved surfaces”, Proc. Ninth Ann. Symp. on Comput. Geometry, ACM Press, 1993, 274–280

[8] Ruppert J., “A Delaunay refinement algorithm for quality 2-dimensional mesh generator”, J. Algorithms, 18:3 (1995), 548–585 | DOI | MR | Zbl

[9] Buscaglia G., Dari E., “Anisotropic mesh optimization and its application in adaptiviy”, Inernat. J. Numer. Meth. Engng., 40 (1997), 4119–4136 | 3.0.CO;2-R class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[10] Carey G., Computational grids. Generation, adaptation, and solution strategies, Taylor and Francis, London, 1997 | MR | Zbl

[11] Frey P., George P.-L., Maillages: applications aux element finis, Hermes SCi. Publ., Paris, 1999

[12] Liseikin V., Grid generation methods, Springer, Berlin–Heidelberg, 1999 | MR | Zbl

[13] Vassilevski Yu., Lipnikov K., “Adaptive algorithm for generation of quasi-optimal meshes”, Comput. Math. Math. Phys., 39 (1999), 1532–1551 | MR

[14] Shewchuk J., “Delaunay refinement algorithms for triangular mesh generation”, Comput. Geometry: Theory and Applic., 22:1–3 (2002), 21–74 ; http://www-2.cs.cmu.edU/~jrs/jrspapers.html#cdt | MR | Zbl

[15] Chugunov V. H., “O konformnoi setke, slabo $\delta$-approksimiruyuschei lomanye”, Chisl. metody, parallelnye vychisleniya i informatsionnye tekhnologii, IVM RAN, M., 2008, 291–317

[16] http://www-users.informatic.rwth-aachen.de/-roberts/meshgeneration.html

[17] http://www.engr.usask.ca/~macphed/finite/fe-resources/mesh.html