@article{ZVMMF_2009_49_5_a8,
author = {V. N. Chugunov},
title = {Algorithm for generating a~conformal quasi-hierarchical triangular mesh that weakly $\delta$-approximates given polygonal lines},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {874--878},
year = {2009},
volume = {49},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a8/}
}
TY - JOUR AU - V. N. Chugunov TI - Algorithm for generating a conformal quasi-hierarchical triangular mesh that weakly $\delta$-approximates given polygonal lines JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 874 EP - 878 VL - 49 IS - 5 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a8/ LA - ru ID - ZVMMF_2009_49_5_a8 ER -
%0 Journal Article %A V. N. Chugunov %T Algorithm for generating a conformal quasi-hierarchical triangular mesh that weakly $\delta$-approximates given polygonal lines %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2009 %P 874-878 %V 49 %N 5 %U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a8/ %G ru %F ZVMMF_2009_49_5_a8
V. N. Chugunov. Algorithm for generating a conformal quasi-hierarchical triangular mesh that weakly $\delta$-approximates given polygonal lines. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 5, pp. 874-878. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a8/
[1] Skvortsov A., Triangulyatsiya Delone i ee primenenie, Izd-vo Tomskogo un-ta, Tomsk, 2002
[2] Shaidurov V. V., Mnogosetochnye metody konechnykh elementov, Nauka, M., 1989 | MR
[3] Rivara M., “Mesh refinement processes based on the generalized bisection of simplexes”, SIAM J. Numer. Analys., 21 (1984), 604–613 | DOI | MR | Zbl
[4] Baker B., Grosse E., Rafferty C. S., “Nonobtuse triangulation of polygons”, Disc. and Comput. Geometry, 3 (1988), 147–168 | DOI | MR | Zbl
[5] Bern M., Eppstein D., Gilbert J. R., “Provably good mesh generation”, Proc. 31st Ann. Symp. on Foundations of Comput. Sci. IEEE, 1990, 231–241 | MR
[6] Bänsch E., “Local mesh refinement in 2 and 3 dimensions”, IMPACT of Comput. in Sci. and Engng., 3 (1991), 181–191 | DOI | MR | Zbl
[7] Chew L. P., “Guaranteed-quality mesh generator for cuved surfaces”, Proc. Ninth Ann. Symp. on Comput. Geometry, ACM Press, 1993, 274–280
[8] Ruppert J., “A Delaunay refinement algorithm for quality 2-dimensional mesh generator”, J. Algorithms, 18:3 (1995), 548–585 | DOI | MR | Zbl
[9] Buscaglia G., Dari E., “Anisotropic mesh optimization and its application in adaptiviy”, Inernat. J. Numer. Meth. Engng., 40 (1997), 4119–4136 | 3.0.CO;2-R class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl
[10] Carey G., Computational grids. Generation, adaptation, and solution strategies, Taylor and Francis, London, 1997 | MR | Zbl
[11] Frey P., George P.-L., Maillages: applications aux element finis, Hermes SCi. Publ., Paris, 1999
[12] Liseikin V., Grid generation methods, Springer, Berlin–Heidelberg, 1999 | MR | Zbl
[13] Vassilevski Yu., Lipnikov K., “Adaptive algorithm for generation of quasi-optimal meshes”, Comput. Math. Math. Phys., 39 (1999), 1532–1551 | MR
[14] Shewchuk J., “Delaunay refinement algorithms for triangular mesh generation”, Comput. Geometry: Theory and Applic., 22:1–3 (2002), 21–74 ; http://www-2.cs.cmu.edU/~jrs/jrspapers.html#cdt | MR | Zbl
[15] Chugunov V. H., “O konformnoi setke, slabo $\delta$-approksimiruyuschei lomanye”, Chisl. metody, parallelnye vychisleniya i informatsionnye tekhnologii, IVM RAN, M., 2008, 291–317
[16] http://www-users.informatic.rwth-aachen.de/-roberts/meshgeneration.html
[17] http://www.engr.usask.ca/~macphed/finite/fe-resources/mesh.html