High-accuracy difference schemes for solving gasdynamic equations by the Godunov method with antidiffusion
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 5, pp. 857-873 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A technique is proposed for improving the accuracy of the Godunov method as applied to gasdynamic simulations in one dimension. The underlying idea is the reconstruction of fluxes arsoss cell boundaries (“large” values) by using antidiffusion corrections, which are obtained by analyzing the differential approximation of the schemes. In contrast to other approaches, the reconstructed values are not the initial data but rather large values calculated by solving the Riemann problem. The approach is efficient and yields higher accuracy difference schemes with a high resolution.
@article{ZVMMF_2009_49_5_a7,
     author = {N. Ya. Moiseev and I. Yu. Silant'eva},
     title = {High-accuracy difference schemes for solving gasdynamic equations by the {Godunov} method with antidiffusion},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {857--873},
     year = {2009},
     volume = {49},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a7/}
}
TY  - JOUR
AU  - N. Ya. Moiseev
AU  - I. Yu. Silant'eva
TI  - High-accuracy difference schemes for solving gasdynamic equations by the Godunov method with antidiffusion
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 857
EP  - 873
VL  - 49
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a7/
LA  - ru
ID  - ZVMMF_2009_49_5_a7
ER  - 
%0 Journal Article
%A N. Ya. Moiseev
%A I. Yu. Silant'eva
%T High-accuracy difference schemes for solving gasdynamic equations by the Godunov method with antidiffusion
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 857-873
%V 49
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a7/
%G ru
%F ZVMMF_2009_49_5_a7
N. Ya. Moiseev; I. Yu. Silant'eva. High-accuracy difference schemes for solving gasdynamic equations by the Godunov method with antidiffusion. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 5, pp. 857-873. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a7/

[1] Godunov S. K., “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47(89):3 (1959), 271–306 | MR | Zbl

[2] Godunov S. K., Zabrodin A. B., Prokopov G. P., “Raznostnaya skhema dlya dvumernykh nestatsionarnykh zadach gazovoi dinamiki i raschet obtekaniya s otoshedshei udarnoi volnoi”, Zh. vychisl. matem. i matem. fiz., 1:6 (1961), 1020–1050 | MR | Zbl

[3] Alalykin G. B., Godunov S. K., Kireeva I. L. i dr., Reshenie odnomernykh zadach gazovoi dinamiki v podvizhnykh setkakh, Nauka, M., 1970 | MR | Zbl

[4] Godunov S. K., Zabrodin A. B., Ivanov M. Ya. i dr., Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976 | MR | Zbl

[5] Kulikovskii A. G., Pogorelov N. V., Semenov A. Yu., Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravnenii, Fizmatlit, M., 2001 | MR

[6] Prokopov G. P., “Raschet raspada razryva dlya poristykh sred i sploshnykh sred s dvuchlennymi uravneniyami sostoyaniya”, VANT. Ser. Metodiki i programmy chislennogo resheniya zadach matem. fiz., 1982, no. 2(10), 32–40

[7] Moiseev N. Ya., Mukhamadieva T. A., “Metod Nyutona dlya resheniya zadachi Rimana o raspade proizvolnogo razryva v sredakh s uravneniyami sostoyaniya obschego vida”, Zh. vychisl. matem. i matem. fiz., 48:6 (2008), 1102–1110 | Zbl

[8] Messon B. S., Teilor T. D., Foster P. M., “Primenenie metoda Godunova dlya rascheta obtekaniya zatuplennykh tel”, Raketnaya tekhn. i kosmonavtika, 7:4 (1969), 148–155

[9] Rozhdestvenskii B. L., Yanenko H. H., Sistemy kvazilineinykh uravnenii i ikh primenenie k gazovoi dinamike, Nauka, M., 1978

[10] Kolgan V. P., “Primenenie printsipa minimalnykh znachenii proizvodnykh k postroeniyu konechno-raznostnykh skhem dlya rascheta razryvnykh reshenii gazovoi dinamiki”, Uch. zap. TsAGI, 3:6 (1972), 68–77

[11] Van Leer B. J., “Towards the ultimate conservative difference scheme. Second-order sequi to Godunov's method”, J. Comput. Phys., 32:1 (1979), 101–136 | DOI

[12] Colella P., Woodward P. R., “The piecewise parabolic method (PPM) for gas dynamical simulations”, J. Comput. Phys., 54:1 (1984), 174–201 | DOI | MR | Zbl

[13] Takewaki H., Nishiguchi A., Yabe T., “Cubic interpolated pseudo-particle method (CIP) for solving hyperbolic-type equations”, J. Comput. Phys., 61 (1985), 261–268 | DOI | MR | Zbl

[14] Kopchenov V. I., Kraiko A. N., “Monotonnaya raznostnaya skhema vtorogo poryadka dlya giperbolicheskikh sistem s dvumya nezavisimymi peremennymi”, Zh. vychisl. matem. i matem. fiz., 23:4 (1983), 848–859 | MR | Zbl

[15] Menshov I. S., “Povyshenie poryadka approksimatsii skhemy Godunova na osnove resheniya obobschennoi zadachi Rimana”, Zh. vychisl. matem. i matem. fiz., 30:9 (1990), 1357–1371 | MR

[16] Fedorenko R. P., “Primenenie raznostnykh skhem vysokoi tochnosti dlya chislennogo resheniya giperbolicheskikh uravnenii”, Zh. vychisl. matem. i matem. fiz., 2:6 (1962), 1122–1128 | MR | Zbl

[17] Toro E. F., Riemann solvers and numerical methods for fluid dynamics, 2nd ed., Springer, Berlin, 1999 | MR

[18] Bondarenko Yu. A., “Poryadok approksimatsii, poryadok chislennoi skhodimosti i ekonomichnost scheta mnogomernoi gazovoi dinamiki v peremennykh Eilera na primere raschetov na skhodimost zadachi “BLAST WAVES””, VANT. Ser. Matem. modelirovanie fiz. protsessov, 2004, no. 4, 51–61

[19] Moiseev N. Ya., “Ob odnoi modifikatsii raznostnoi skhemy Godunova”, VANT. Ser. Metodiki i programmy chislennogo resheniya zadach matem. fiz., 1986, no. 3, 35–43 | MR

[20] Moiseev N. Ya., Silanteva I. Yu., Raznostnye skhemy proizvolnogo poryadka approksimatsii dlya resheniya lineinykh uravnenii perenosa s postoyannymi koeffitsientami metodom Godunova s antidiffuziei, Preprint No 230, RFYaTs-VNIITF, 2008 | MR

[21] Moiseev N. Ya., Silanteva I. Yu., “Raznostnye skhemy proizvolnogo poryadka approksimatsii dlya resheniya lineinykh uravnenii perenosa s postoyannymi koeffitsientami metodom Godunova s antidiffuziei”, Zh. vychisl. matem. i matem. fiz., 48:7 (2008), 1282–1293

[22] Shokin N. I., Metod differentsialnogo priblizheniya, Nauka, Novosibirsk, 1979

[23] Fromm J. D., “A method for reducing dispersion in connective difference schemes”, J. Comput. Phys., 3:1 (1968), 176–189 | DOI | Zbl

[24] Dyakonov V. P., Maple 8 v matematike, fizike i obrazovanii, SOLON-PresS, M., 2003

[25] Godunov S. K., Zabrodin A. B., “O raznostnykh skhemakh vtorogo poryadka tochnosti dlya mnogomernykh zadach”, Zh. vychisl. matem. i matem. fiz., 2:4 (1962), 706–708 | MR | Zbl

[26] Leonard B. P., Niknafs H. S., “Sharp monotonie resolution of discontinuities without clipping of narrow extrema”, Comput. and Fluids, 19:1 (1991), 141–154 | DOI | Zbl

[27] Boris J. P., Book D. L., Hain K., “Flux-corrected transport: Generalization of the method”, J. Comput. Phys., 18 (1975), 248–283 | DOI | MR | Zbl

[28] Zalesak S. T., “Fully multidimensional flux-corrected transport algorithms for fluids”, J. Comput. Phys., 31 (1979), 335–345 | DOI | MR

[29] Sod G. A., “A survey of several finite difference methods for systems of non-linear hyperbolic conservations laws”, J. Comput. Phys., 27 (1978), 1–31 | DOI | MR | Zbl

[30] Kuropatenko V. F., Kovalenko G. V., Kuznetsov V. I. i dr., “Kompleks programm “VOLNA” i neodnorodnyi raznostnyi metod dlya rascheta neustanovivshikhsya dvizhenii szhimaemykh sploshnykh sred”, VANT. Ser. Metodiki i programmy chisl. resheniya zadach matem. fiz., 1989, no. 2, 19–25

[31] Moiseev N. Ya., “Soglasovannaya approksimatsiya v raznostnykh skhemakh tipa S. K. Godunova dlya resheniya odnomernykh zadach gazovoi dinamiki”, Zh. vychisl. matem. i matem. fiz., 36:1 (1996), 149–150 | MR