Finite difference schemes for the singularly perturbed reaction-diffusion equation in the case of spherical symmetry
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 5, pp. 840-856 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The boundary value problem for the singularly perturbed reaction-diffusion parabolic equation in a ball in the case of spherical symmetry is considered. The derivatives with respect to the radial variable appearing in the equation are written in divergent form. The third kind boundary condition, which admits the Dirichlet and Neumann conditions, is specified on the boundary of the domain. The Laplace operator in the differential equation involves a perturbation parameter $\varepsilon^2$, where $\varepsilon$ takes arbitrary values in the half-open interval (0, 1]. When $\varepsilon\to0$, the solution of such a problem has a parabolic boundary layer in a neighborhood of the boundary. Using the integro-interpolational method and the condensing grid technique, conservative finite difference schemes on flux grids are constructed that converge $\varepsilon$-uniformly at a rate of $O(N^{-2}\ln^2N+N_0^{-1})$, where $N+1$ and $N_0+1$ are the numbers of the mesh points in the radial and time variables, respectively.
@article{ZVMMF_2009_49_5_a6,
     author = {G. I. Shishkin and L. P. Shishkina},
     title = {Finite difference schemes for the singularly perturbed reaction-diffusion equation in the case of spherical symmetry},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {840--856},
     year = {2009},
     volume = {49},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a6/}
}
TY  - JOUR
AU  - G. I. Shishkin
AU  - L. P. Shishkina
TI  - Finite difference schemes for the singularly perturbed reaction-diffusion equation in the case of spherical symmetry
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 840
EP  - 856
VL  - 49
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a6/
LA  - ru
ID  - ZVMMF_2009_49_5_a6
ER  - 
%0 Journal Article
%A G. I. Shishkin
%A L. P. Shishkina
%T Finite difference schemes for the singularly perturbed reaction-diffusion equation in the case of spherical symmetry
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 840-856
%V 49
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a6/
%G ru
%F ZVMMF_2009_49_5_a6
G. I. Shishkin; L. P. Shishkina. Finite difference schemes for the singularly perturbed reaction-diffusion equation in the case of spherical symmetry. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 5, pp. 840-856. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a6/

[1] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992

[2] Hemker P. W., Shishkin G. I., Shishkina L. P., “$\varepsilon$-uniform schemes with high-order time-accuracy for parabolic singular perturbation problems”, IMA J. Numer. Analys., 20:1 (2000), 99–121 | DOI | MR | Zbl

[3] Shishkin G. I., “A finite difference scheme on a priori adapted meshes for a singularly perturbed parabolic convection-diffusion equation”, Numer. Math. Theory Methods Appl., 1:2 (2008), 214–234 | MR | Zbl

[4] Shiskhin G. I., “Grid approximation of singularly perturbed parabolic equations with piecewise continuous initialboundary conditions”, Proc. Steklov Inst. Math., Suppl. 2, 2007, 213–230

[5] V. A. Grigorev, V. M. Zorin (red.), Teplotekhnicheskii eksperiment: Spravochnik, Energoizdat, M., 1982

[6] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR

[7] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR | Zbl

[8] Shishkin G. I., “Approksimatsiya reshenii singulyarno vozmuschennykh kraevykh zadach s parabolicheskim pogranichnym sloem”, Zh. vychisl. matem. i matem. fiz., 29:7 (1989), 963–977 | MR

[9] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted numerical methods for singular perturbation problems, World Scient., Singapore, 1996 | MR

[10] Ilin A. M., Kalashnikov A. C., Oleinik O. A., “Lineinye uravneniya vtorogo poryadka parabolicheskogo tipa”, Uspekhi matem. nauk, 17:3 (1962), 3–146 | MR

[11] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva H. H., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[12] Fridman A., Uravneniya s chastnymi proizvodnymi parabolicheskogo tipa, Mir, M., 1968

[13] Shishkin G. I., “Grid approximation of singularly parturbed boundary value problem for quasi-linear parabolic equations in case of complete degeneracy in spatial variables”, Soviet J. Numer. Analys. Math. Modelling, 6:3 (1991), 243–261 | DOI | MR | Zbl

[14] Shishkin G. I., “Setochnaya approksimatsiya singulyarno vozmuschennoi kraevoi zadachi dlya kvazilineinogo ellipticheskogo uravneniya v sluchae polnogo vyrozhdeniya”, Zh. vychisl. matem. i matem. fiz., 31:12 (1991), 1808–1825 | MR | Zbl

[15] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki: Uchebnoe posobie, Izd. 6-e, ispr. i dop., Izd-vo MGU, M., 1999 | MR

[16] Budak B. M., Samarskii A. A., Tikhonov A. N., Sbornik zadach po matematicheskoi fizike, Nauka, M., 1980 | MR | Zbl

[17] Degtyarev L. M., Favorskii A. P., “Potokovyi variant metoda progonki”, Zh. vychisl. matem. i matem. fiz., 8:3 (1968), 679–684 | MR

[18] Degtyarev L. M., Favorskii A. P., “Potokovyi variant metoda progonki dlya raznostnykh zadach s silno menyayuschimisya koeffitsientami”, Zh. vychisl. matem. i matem. fiz., 9:1 (1969), 211–218 | MR | Zbl