@article{ZVMMF_2009_49_5_a6,
author = {G. I. Shishkin and L. P. Shishkina},
title = {Finite difference schemes for the singularly perturbed reaction-diffusion equation in the case of spherical symmetry},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {840--856},
year = {2009},
volume = {49},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a6/}
}
TY - JOUR AU - G. I. Shishkin AU - L. P. Shishkina TI - Finite difference schemes for the singularly perturbed reaction-diffusion equation in the case of spherical symmetry JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 840 EP - 856 VL - 49 IS - 5 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a6/ LA - ru ID - ZVMMF_2009_49_5_a6 ER -
%0 Journal Article %A G. I. Shishkin %A L. P. Shishkina %T Finite difference schemes for the singularly perturbed reaction-diffusion equation in the case of spherical symmetry %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2009 %P 840-856 %V 49 %N 5 %U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a6/ %G ru %F ZVMMF_2009_49_5_a6
G. I. Shishkin; L. P. Shishkina. Finite difference schemes for the singularly perturbed reaction-diffusion equation in the case of spherical symmetry. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 5, pp. 840-856. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a6/
[1] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, UrO RAN, Ekaterinburg, 1992
[2] Hemker P. W., Shishkin G. I., Shishkina L. P., “$\varepsilon$-uniform schemes with high-order time-accuracy for parabolic singular perturbation problems”, IMA J. Numer. Analys., 20:1 (2000), 99–121 | DOI | MR | Zbl
[3] Shishkin G. I., “A finite difference scheme on a priori adapted meshes for a singularly perturbed parabolic convection-diffusion equation”, Numer. Math. Theory Methods Appl., 1:2 (2008), 214–234 | MR | Zbl
[4] Shiskhin G. I., “Grid approximation of singularly perturbed parabolic equations with piecewise continuous initialboundary conditions”, Proc. Steklov Inst. Math., Suppl. 2, 2007, 213–230
[5] V. A. Grigorev, V. M. Zorin (red.), Teplotekhnicheskii eksperiment: Spravochnik, Energoizdat, M., 1982
[6] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1989 | MR
[7] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR | Zbl
[8] Shishkin G. I., “Approksimatsiya reshenii singulyarno vozmuschennykh kraevykh zadach s parabolicheskim pogranichnym sloem”, Zh. vychisl. matem. i matem. fiz., 29:7 (1989), 963–977 | MR
[9] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted numerical methods for singular perturbation problems, World Scient., Singapore, 1996 | MR
[10] Ilin A. M., Kalashnikov A. C., Oleinik O. A., “Lineinye uravneniya vtorogo poryadka parabolicheskogo tipa”, Uspekhi matem. nauk, 17:3 (1962), 3–146 | MR
[11] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva H. H., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967
[12] Fridman A., Uravneniya s chastnymi proizvodnymi parabolicheskogo tipa, Mir, M., 1968
[13] Shishkin G. I., “Grid approximation of singularly parturbed boundary value problem for quasi-linear parabolic equations in case of complete degeneracy in spatial variables”, Soviet J. Numer. Analys. Math. Modelling, 6:3 (1991), 243–261 | DOI | MR | Zbl
[14] Shishkin G. I., “Setochnaya approksimatsiya singulyarno vozmuschennoi kraevoi zadachi dlya kvazilineinogo ellipticheskogo uravneniya v sluchae polnogo vyrozhdeniya”, Zh. vychisl. matem. i matem. fiz., 31:12 (1991), 1808–1825 | MR | Zbl
[15] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki: Uchebnoe posobie, Izd. 6-e, ispr. i dop., Izd-vo MGU, M., 1999 | MR
[16] Budak B. M., Samarskii A. A., Tikhonov A. N., Sbornik zadach po matematicheskoi fizike, Nauka, M., 1980 | MR | Zbl
[17] Degtyarev L. M., Favorskii A. P., “Potokovyi variant metoda progonki”, Zh. vychisl. matem. i matem. fiz., 8:3 (1968), 679–684 | MR
[18] Degtyarev L. M., Favorskii A. P., “Potokovyi variant metoda progonki dlya raznostnykh zadach s silno menyayuschimisya koeffitsientami”, Zh. vychisl. matem. i matem. fiz., 9:1 (1969), 211–218 | MR | Zbl