Generation of structured difference grids in two-dimensional nonconvex domains using mappings
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 5, pp. 826-839 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Generation of structured difference grids in two-dimensional nonconvex domains is considered using a mapping of a parametric domain with a given nondegenerate grid onto a physical domain. For that purpose, a harmonic mapping is first used, which is a diffeomorphism under certain conditions due to Rado's theorem. Although the harmonic mapping is a diffeomorphism, its discrete implementation can produce degenerate grids in nonconvex domains with highly curved boundaries. It is shown that the degeneration occurs due to approximation errors. To control the coordinate lines of the grid, an additional mapping is used and universal elliptic differential equations are solved. This makes it possible to generate a nondegenerate grid with cells of a prescribed shape.
@article{ZVMMF_2009_49_5_a5,
     author = {B. N. Azarenok},
     title = {Generation of structured difference grids in two-dimensional nonconvex domains using mappings},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {826--839},
     year = {2009},
     volume = {49},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a5/}
}
TY  - JOUR
AU  - B. N. Azarenok
TI  - Generation of structured difference grids in two-dimensional nonconvex domains using mappings
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 826
EP  - 839
VL  - 49
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a5/
LA  - ru
ID  - ZVMMF_2009_49_5_a5
ER  - 
%0 Journal Article
%A B. N. Azarenok
%T Generation of structured difference grids in two-dimensional nonconvex domains using mappings
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 826-839
%V 49
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a5/
%G ru
%F ZVMMF_2009_49_5_a5
B. N. Azarenok. Generation of structured difference grids in two-dimensional nonconvex domains using mappings. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 5, pp. 826-839. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a5/

[1] Radó T., “Aufgabe 41, Jahresber”, Deutsche Math.-Verein., 35 (1926), 49

[2] Winslow A. M., “Numerical solution of the quasi-linear Poisson equation in a nonuniform triangle mesh”, J. Comput. Phys., 1 (1966), 149–172 | DOI | MR | Zbl

[3] Thompson J. F., Mastin C. W., Thames F., “Automatic numerical generation of body-fitted curvilinear coordinate system for field containing any number of arbitrary two dimensional bodies”, J. Comput. Phys., 15 (1974), 299–319 | DOI | Zbl

[4] Knupp P., Luczak R., “Truncation error in grid generation: a case study”, Numer. Meth. Partial Different. Equat., 11 (1995), 561–571 | DOI | MR | Zbl

[5] Ivanenko S. A., “Upravlenie formoi yacheek v protsesse postroeniya setok”, Zh. vychisl. matem. i matem. fiz., 40:11 (2000), 1662–1684 | MR | Zbl

[6] Prokopov G. P., “Konstruirovanie testovykh zadach dlya postroeniya dvumernykh regulyarnykh setok”, Vopr. atomnoi nauki i tekhn. Ser. Matem. modelirovanie fiz. protsessov, 1993, no. 1, 7–12

[7] Kneser H., “Lösung der Aufgabe 41”, Jahresber. Deutsche Math.-Verein, 35 (1926), 123–124

[8] Liu H., Liao G., “A note on harmonic maps”, Appl. Math. Letts, 9:4 (1996), 95–97 | DOI | MR | Zbl

[9] Laugesen R. S., “Injectivity can fail for higher-dimensional harmonic extensions”, Complex Variables, 28 (1996), 357–369 | MR | Zbl

[10] Ivanenko C. A., Charakhchyan A. A., “Krivolineinye setki iz vypuklykh chetyrekhugolnikov”, Zh. vychisl. matem. i matem. fiz., 28:4 (1988), 503–514 | MR

[11] Brackbill J. U., Saltzman J. S., “Adaptive zoning for singular problems in two dimensions”, J. Comput. Phys., 46 (1982), 342–368 | DOI | MR | Zbl

[12] Bobylev H. A., Ivanenko C. A., Kazunin A. B., “O kusochno-gladkikh gomeomorfnykh otobrazheniyakh ogranichennykh oblastei i ikh prilozheniyakh k teorii setok”, Zh. vychisl. matem. i matem. fiz., 43:6 (2003), 808–817 | MR | Zbl

[13] Todunov C. K., Prokopov G. P., “O raschetakh konformnykh otobrazhenii i postroenii raznostnykh setok”, Zh. vychisl. matem. i matem. fiz., 7:5 (1967), 1031–1059 | MR

[14] Thompson J. F., Warsi Z. U. A., Mastin C. W., Numerical grid generation, North-Holland, etc., N.Y., 1985 ; http://www.hpc.msstate.edu/publications/gridbook/ | MR | Zbl

[15] Azarenok B. H., “Variatsionnyi metod postroeniya prostranstvennykh adaptivnykh setok”, Zh. vychisl. matem. i matem. fiz., 48:5 (2008), 831–850 | MR | Zbl

[16] Azarenok B. N., “Variatsionnyi metod postroeniya geksaedralnykh setok s upravlyayuschei metrikoi”, Matem. modelirovanie, 20:9 (2008), 3–22 | MR | Zbl

[17] Ivanenko S. L., “O suschestvovanii uravnenii dlya opisaniya klassov nevyrozhdennykh krivolineinykh koordinat v proizvolnykh oblastyakh”, Zh. vychisl. matem. i matem. fiz., 42:1 (2002), 47–52 | MR | Zbl

[18] Godunov S. K., Prokopov G. P., “Ob ispolzovanii podvizhnykh setok v gazodinamicheskikh raschetakh”, Zh. vychisl. matem. i matem. fiz., 12:2 (1972), 429–440 | MR | Zbl

[19] Spekreijse S. P., “Elliptic grid generation based on Laplace equations and algebraic transformations”, J. Comput. Phys., 118 (1995), 38–61 | DOI | Zbl

[20] Castillo J. E., Roache P. J., Steinberg S., “On the folding of numerically generated grids: use of a reference grid”, Communs Appl. Numer. Meth., 4 (1988), 471–481 | DOI | MR | Zbl

[21] Vlasov V. I., “Ob odnom metode resheniya nekotorykh smeshannykh zadach dlya uravneniya Laplasa”, Dokl. AN SSSR, 237:5 (1977), 1012–1015 | MR | Zbl

[22] Vlasov V. I., Kraevye zadachi v oblastyakh s krivolineinoi granitsei, VTs RAN, M., 1987 | MR