Solving the quasi-variational Signorini inequality by the method of successive approximations
Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 5, pp. 805-814 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The method of successive approximations is examined as a tool for solving the semicoercive quasi-variational Signorini inequality. The auxiliary problems with given friction arising at each step of this method are solved using the Uzawa method with an iterative proximal regularization of the modified Lagrangian functional.
@article{ZVMMF_2009_49_5_a3,
     author = {R. V. Namm and S. A. Sachkov},
     title = {Solving the quasi-variational {Signorini} inequality by the method of successive approximations},
     journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
     pages = {805--814},
     year = {2009},
     volume = {49},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a3/}
}
TY  - JOUR
AU  - R. V. Namm
AU  - S. A. Sachkov
TI  - Solving the quasi-variational Signorini inequality by the method of successive approximations
JO  - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
PY  - 2009
SP  - 805
EP  - 814
VL  - 49
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a3/
LA  - ru
ID  - ZVMMF_2009_49_5_a3
ER  - 
%0 Journal Article
%A R. V. Namm
%A S. A. Sachkov
%T Solving the quasi-variational Signorini inequality by the method of successive approximations
%J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki
%D 2009
%P 805-814
%V 49
%N 5
%U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a3/
%G ru
%F ZVMMF_2009_49_5_a3
R. V. Namm; S. A. Sachkov. Solving the quasi-variational Signorini inequality by the method of successive approximations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 5, pp. 805-814. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a3/

[1] Glavachek I., Gaslinger Ya., Nechas I., Lovishek Ya., Reshenie variatsionnykh neravenstv v mekhanike, Mir, M., 1986 | MR

[2] Kikuchi N., Oden T., Contact problem in elasticity: a study of variational inequalities and finite element methods, SIAM, Philadelphia, 1988 | MR | Zbl

[3] Vikhtenko E. M., Namm P. B., “Skhema dvoistvennosti dlya resheniya polukoertsitivnoi zadachi Sinorini s treniem”, Zh. vychisl. matem i matem. fiz., 47:12 (2007), 2023–2036 | MR

[4] Vikhtenko E. M., Namm R. V., “Iterativnaya proksimalnaya regulyarizatsiya modifitsirovannogo funktsionala Lagranzha dlya resheniya kvazivariatsionnogo neravenstva Sinorini”, Zh. vychisl. matem. i matem. fiz., 48:9 (2008), 1571–1579 | MR

[5] Kravchuk A. C., Variatsionnye i kvazivariatsionnye neravenstva v mekhanike, MGAPI, M., 1997

[6] Antipin A. C., Gradientnyi i ekstragradientnyi podkhody v bilineinom ravnovesnom programmirovanii, VTs RAN, M., 2002

[7] Glovinski R., Lions Zh. L., Tremoler R., Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979 | MR

[8] Glowinski R., Numerical methods for nonlinear variational problems, Springer, New York, 1984 | MR | Zbl

[9] Fikera G., Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974

[10] By G., Namm R. V., Sachkov C. A., “Iteratsionnyi metod poiska sedlovoi tochki dlya polukoertsitivnoi zadachi Sinorini, osnovannyi na modifitsirovannom funktsionale Lagranzha”, Zh. vychisl. matem. i matem. fiz., 46:1 (2006), 26–36 | MR | Zbl

[11] By G., Kim S., Namm R. V., Sachkov C. A., “Metod iterativnoi proksimalnoi regulyarizatsii dlya poiska sedlovoi tochki v polukoertsitivnoi zadache Sinorini”, Zh. vychisl. matem. i matem. fiz., 46:11 (2006), 2024–2031 | MR

[12] Vasin V. V., Eremin I. I., Operatory i iteratsionnye protsessy feierovskogo tipa, In-t kompyuternykh iss. NITs “Regulyarnaya i khaotich. dinamika”, M.-Izhevsk, 2005 | MR

[13] Antipin A. C., “O metode vypuklogo programmirovaniya, ispolzuyuschem simmetricheskuyu modifikatsiyu funktsionala Lagranzha”, Ekonomika i matem. metody, 12:6 (1976), 1164–1173 | Zbl

[14] Rockafellar R. T., “Augmented Lagrangians and application of the proximal point algorithm in convex programming”, Math. Operat. Res., 1:2 (1976), 97–116 | DOI | MR | Zbl

[15] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Fizmatlit, M., 1981 | MR

[16] Strang G., Fix G., An analysis of the finite element method, Prentice Hall, Inc., New York–EngleWood Cliffs, 1973 | MR | Zbl

[17] Zenkevich O., Morgan K., Konechnye elementy i approksimatsiya, Mir, M., 1986 | MR

[18] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR