@article{ZVMMF_2009_49_5_a3,
author = {R. V. Namm and S. A. Sachkov},
title = {Solving the quasi-variational {Signorini} inequality by the method of successive approximations},
journal = {\v{Z}urnal vy\v{c}islitelʹnoj matematiki i matemati\v{c}eskoj fiziki},
pages = {805--814},
year = {2009},
volume = {49},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a3/}
}
TY - JOUR AU - R. V. Namm AU - S. A. Sachkov TI - Solving the quasi-variational Signorini inequality by the method of successive approximations JO - Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki PY - 2009 SP - 805 EP - 814 VL - 49 IS - 5 UR - http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a3/ LA - ru ID - ZVMMF_2009_49_5_a3 ER -
%0 Journal Article %A R. V. Namm %A S. A. Sachkov %T Solving the quasi-variational Signorini inequality by the method of successive approximations %J Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki %D 2009 %P 805-814 %V 49 %N 5 %U http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a3/ %G ru %F ZVMMF_2009_49_5_a3
R. V. Namm; S. A. Sachkov. Solving the quasi-variational Signorini inequality by the method of successive approximations. Žurnal vyčislitelʹnoj matematiki i matematičeskoj fiziki, Tome 49 (2009) no. 5, pp. 805-814. http://geodesic.mathdoc.fr/item/ZVMMF_2009_49_5_a3/
[1] Glavachek I., Gaslinger Ya., Nechas I., Lovishek Ya., Reshenie variatsionnykh neravenstv v mekhanike, Mir, M., 1986 | MR
[2] Kikuchi N., Oden T., Contact problem in elasticity: a study of variational inequalities and finite element methods, SIAM, Philadelphia, 1988 | MR | Zbl
[3] Vikhtenko E. M., Namm P. B., “Skhema dvoistvennosti dlya resheniya polukoertsitivnoi zadachi Sinorini s treniem”, Zh. vychisl. matem i matem. fiz., 47:12 (2007), 2023–2036 | MR
[4] Vikhtenko E. M., Namm R. V., “Iterativnaya proksimalnaya regulyarizatsiya modifitsirovannogo funktsionala Lagranzha dlya resheniya kvazivariatsionnogo neravenstva Sinorini”, Zh. vychisl. matem. i matem. fiz., 48:9 (2008), 1571–1579 | MR
[5] Kravchuk A. C., Variatsionnye i kvazivariatsionnye neravenstva v mekhanike, MGAPI, M., 1997
[6] Antipin A. C., Gradientnyi i ekstragradientnyi podkhody v bilineinom ravnovesnom programmirovanii, VTs RAN, M., 2002
[7] Glovinski R., Lions Zh. L., Tremoler R., Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979 | MR
[8] Glowinski R., Numerical methods for nonlinear variational problems, Springer, New York, 1984 | MR | Zbl
[9] Fikera G., Teoremy suschestvovaniya v teorii uprugosti, Mir, M., 1974
[10] By G., Namm R. V., Sachkov C. A., “Iteratsionnyi metod poiska sedlovoi tochki dlya polukoertsitivnoi zadachi Sinorini, osnovannyi na modifitsirovannom funktsionale Lagranzha”, Zh. vychisl. matem. i matem. fiz., 46:1 (2006), 26–36 | MR | Zbl
[11] By G., Kim S., Namm R. V., Sachkov C. A., “Metod iterativnoi proksimalnoi regulyarizatsii dlya poiska sedlovoi tochki v polukoertsitivnoi zadache Sinorini”, Zh. vychisl. matem. i matem. fiz., 46:11 (2006), 2024–2031 | MR
[12] Vasin V. V., Eremin I. I., Operatory i iteratsionnye protsessy feierovskogo tipa, In-t kompyuternykh iss. NITs “Regulyarnaya i khaotich. dinamika”, M.-Izhevsk, 2005 | MR
[13] Antipin A. C., “O metode vypuklogo programmirovaniya, ispolzuyuschem simmetricheskuyu modifikatsiyu funktsionala Lagranzha”, Ekonomika i matem. metody, 12:6 (1976), 1164–1173 | Zbl
[14] Rockafellar R. T., “Augmented Lagrangians and application of the proximal point algorithm in convex programming”, Math. Operat. Res., 1:2 (1976), 97–116 | DOI | MR | Zbl
[15] Marchuk G. I., Agoshkov V. I., Vvedenie v proektsionno-setochnye metody, Fizmatlit, M., 1981 | MR
[16] Strang G., Fix G., An analysis of the finite element method, Prentice Hall, Inc., New York–EngleWood Cliffs, 1973 | MR | Zbl
[17] Zenkevich O., Morgan K., Konechnye elementy i approksimatsiya, Mir, M., 1986 | MR
[18] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR